Jellús Vladimír, Sharp Jonathan C, Tomanek Boguslaw, Latta Peter
Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84219, Bratislava, Slovakia.
J Magn Reson. 2003 May;162(1):189-97. doi: 10.1016/s1090-7807(03)00084-3.
Almost all NMR imaging and localized spectroscopic methods fundamentally rely on the use of magnetic field gradients. It follows that precise information on gradient waveform shape and rise-times is often most useful in experimental MRI. We present a very simple and robust method for measuring the time evolution of a magnetic field gradient. The method is based on the analysis of the NMR signal in the time domain, and requires no specialized field measurement probes for its implementation. The technique makes use of the principal that for small flip angles the excitation profile is a good approximation to the Fourier transform of the radio frequency pulse shape. Creation of the NMR signal can be considered as an inverse Fourier transform and thus variation of the gradient strength during the excitation pulse influences the shape of the NMR signal. Although originally designed for measurement of the rise time only, we have now extended the technique to measure the exact time course of the gradient. The theory is confirmed by experimental results for gradient waveform field measurements in a high-field vertical bore system.
几乎所有的核磁共振成像和局部光谱方法从根本上都依赖于磁场梯度的使用。因此,关于梯度波形形状和上升时间的精确信息在实验性磁共振成像中往往最为有用。我们提出了一种非常简单且稳健的方法来测量磁场梯度的时间演变。该方法基于对时域中核磁共振信号的分析,并且其实施不需要专门的场测量探头。该技术利用了这样一个原理:对于小翻转角,激发轮廓很好地近似于射频脉冲形状的傅里叶变换。核磁共振信号的产生可被视为逆傅里叶变换,因此激发脉冲期间梯度强度的变化会影响核磁共振信号的形状。尽管该技术最初仅设计用于测量上升时间,但我们现在已将其扩展以测量梯度的精确时间历程。在高场垂直孔径系统中进行的梯度波形场测量的实验结果证实了该理论。