Suppr超能文献

内源性起搏电位在应用致癫痫药物后发展为阵发性去极化偏移(PDSs)。

Endogenous pacemaker potentials develop into paroxysmal depolarization shifts (PDSs) with application of an epileptogenic drug.

作者信息

Altrup Ulrich, Häder Marc, Storz Ulrich

机构信息

Institut für Experimentelle Epilepsieforschung, University of Münster, Hüfferstrasse 68, 48149 Münster, Germany.

出版信息

Brain Res. 2003 Jun 13;975(1-2):73-84. doi: 10.1016/s0006-8993(03)02588-5.

Abstract

Well-known invertebrate ganglia (buccal ganglia of Helix pomatia, abdominal ganglia of Aplysia californica) were used to study the contribution of synaptic potentials, central pattern generators, and endogenously generated neuronal potentials to the development of epileptiform activity. Epileptiform activity which was induced with application of pentylenetetrazol (1 to 100 mM) or etomidate (0.12 to 1.0 mM) consisted of paroxysmal depolarization shifts (PDSs) recorded simultaneously from several identified neurons with sharp microelectrodes. With application of an epileptogenic drug, endogenous pacemaker potentials develop into PDSs. With increasing concentration of the drug, (i) amplitude of pacemaker-depolarizations and (ii) delay of pacemaker-repolarization increased progressively finally resulting in PDSs. Additionally, the activation characterists of currents shifted from between -50 and -40 mV (pacemaker potentials, control conditions) to between -100 and -40 mV (PDS, epileptic conditions). Only neurons which generated pacemaker potentials under control conditions could generate PDSs under epileptic conditions. Chemical synaptic inputs triggered or blocked pacemaker potentials as well as PDSs. Activities induced from central pattern generators were identified with simultaneous recordings from several identified neurons. The central pattern generators could trigger or block pacemaker potentials as well as PDSs. Results demonstrate that, in the used model nervous systems, pacemaker potentials which are generated by the single neurons are the physiologic basis of epileptic activity.

摘要

人们利用知名的无脊椎动物神经节(例如,皱襞蛞蝓的颊神经节、加州海兔的腹神经节)来研究突触电位、中枢模式发生器以及内源性产生的神经元电位对癫痫样活动发展的作用。通过应用戊四氮(1至100 mM)或依托咪酯(0.12至1.0 mM)诱导产生的癫痫样活动,由用尖锐微电极同时记录的几个已识别神经元的阵发性去极化偏移(PDS)组成。在应用致痫药物时,内源性起搏器电位发展为PDS。随着药物浓度增加,(i)起搏器去极化的幅度和(ii)起搏器复极化的延迟逐渐增加,最终导致PDS。此外,电流的激活特征从-50至-40 mV之间(起搏器电位,对照条件)转变为-100至-40 mV之间(PDS,癫痫条件)。只有在对照条件下产生起搏器电位的神经元才能在癫痫条件下产生PDS。化学突触输入触发或阻断起搏器电位以及PDS。通过同时记录几个已识别神经元来识别由中枢模式发生器诱导的活动。中枢模式发生器可以触发或阻断起搏器电位以及PDS。结果表明,在所使用的模型神经系统中,由单个神经元产生的起搏器电位是癫痫活动的生理基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验