Suppr超能文献

Elucidation of HIV-1 protease resistance by characterization of interaction kinetics between inhibitors and enzyme variants.

作者信息

Shuman Cynthia F, Markgren Per Olof, Hämäläinen Markku, Danielson U Helena

机构信息

Department of Biochemistry, Uppsala University, BMC, Box 576, SE-751 23, Uppsala, Sweden.

出版信息

Antiviral Res. 2003 May;58(3):235-42. doi: 10.1016/s0166-3542(03)00002-0.

Abstract

The kinetics of the interaction between drug-resistant variants of HIV-1 protease (G48V, V82A, L90M, I84V/L90M, and G48V/V82A/I84V/L90M) and clinically used inhibitors (amprenavir, indinavir, nelfinavir, ritonavir, and saquinavir) were determined using biosensor technology. The enzyme variants were immobilized on a biosensor chip and the association and dissociation rate constants (k(on) and k(off)) and affinities (K(D)) for interactions with inhibitors were determined. A unique interaction kinetic profile was observed for each variant/inhibitor combination. Substitution of single amino acids in the protease primarily resulted in reduced affinity through increased k(off) for the inhibitors. For inhibitors characterized by fast association rates to wild-type protease (ritonavir, amprenavir, and indinavir), additional substitutions resulted in a further reduction of affinity by a combination of decreased k(on) and increased k(off). For inhibitors characterized by slow dissociation rates to wild-type enzyme (saquinavir and nelfinavir), the decrease of affinity conferred by additional mutations was attributed to increased k(off) values. Development of resistance thus appears to be associated with a change of the distinctive kinetic parameter contributing to high affinity. Further inhibitor design should focus on improving the "weak point" of the lead compound, that being either k(on) or k(off).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验