Suppr超能文献

在虚拟现实中交互式采样药物-蛋白结合途径的自由能。

Free energy along drug-protein binding pathways interactively sampled in virtual reality.

机构信息

Center for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.

Departamento de Química Física, Universidad de Valencia, 46100, Burjassot, Spain.

出版信息

Sci Rep. 2023 Oct 4;13(1):16665. doi: 10.1038/s41598-023-43523-x.

Abstract

We describe a two-step approach for combining interactive molecular dynamics in virtual reality (iMD-VR) with free energy (FE) calculation to explore the dynamics of biological processes at the molecular level. We refer to this combined approach as iMD-VR-FE. Stage one involves using a state-of-the-art 'human-in-the-loop' iMD-VR framework to generate a diverse range of protein-ligand unbinding pathways, benefitting from the sophistication of human spatial and chemical intuition. Stage two involves using the iMD-VR-sampled pathways as initial guesses for defining a path-based reaction coordinate from which we can obtain a corresponding free energy profile using FE methods. To investigate the performance of the method, we apply iMD-VR-FE to investigate the unbinding of a benzamidine ligand from a trypsin protein. The binding free energy calculated using iMD-VR-FE is similar for each pathway, indicating internal consistency. Moreover, the resulting free energy profiles can distinguish energetic differences between pathways corresponding to various protein-ligand conformations (e.g., helping to identify pathways that are more favourable) and enable identification of metastable states along the pathways. The two-step iMD-VR-FE approach offers an intuitive way for researchers to test hypotheses for candidate pathways in biomolecular systems, quickly obtaining both qualitative and quantitative insight.

摘要

我们描述了一种两步法,将虚拟现实中的交互式分子动力学(iMD-VR)与自由能(FE)计算相结合,以探索分子水平上生物过程的动力学。我们将这种组合方法称为 iMD-VR-FE。第一步涉及使用最先进的“人在回路”iMD-VR 框架生成多样化的蛋白质-配体解吸途径,受益于人类空间和化学直觉的复杂性。第二步涉及使用 iMD-VR 采样的途径作为定义基于路径的反应坐标的初始猜测,我们可以使用 FE 方法从该坐标获得相应的自由能分布。为了研究该方法的性能,我们应用 iMD-VR-FE 来研究苯甲脒配体从胰蛋白酶蛋白上的解吸。使用 iMD-VR-FE 计算得到的结合自由能对于每个途径都是相似的,表明其具有内部一致性。此外,所得的自由能分布可以区分对应于各种蛋白质-配体构象的途径之间的能量差异(例如,有助于识别更有利的途径),并能够识别途径上的亚稳态。两步 iMD-VR-FE 方法为研究人员提供了一种直观的方法,可以在生物分子系统中测试候选途径的假设,快速获得定性和定量的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a1/10551034/8eba1b48bac1/41598_2023_43523_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验