Suppr超能文献

介电势垒在狭窄生物通道中的作用:一种模拟单通道电流的新型复合方法。

The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.

作者信息

Mamonov Artem B, Coalson Rob D, Nitzan Abraham, Kurnikova Maria G

机构信息

Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.

出版信息

Biophys J. 2003 Jun;84(6):3646-61. doi: 10.1016/S0006-3495(03)75095-4.

Abstract

A composite continuum theory for calculating ion current through a protein channel of known structure is proposed, which incorporates information about the channel dynamics. The approach is utilized to predict current through the Gramicidin A ion channel, a narrow pore in which the applicability of conventional continuum theories is questionable. The proposed approach utilizes a modified version of Poisson-Nernst-Planck (PNP) theory, termed Potential-of-Mean-Force-Poisson-Nernst-Planck theory (PMFPNP), to compute ion currents. As in standard PNP, ion permeation is modeled as a continuum drift-diffusion process in a self-consistent electrostatic potential. In PMFPNP, however, information about the dynamic relaxation of the protein and the surrounding medium is incorporated into the model of ion permeation by including the free energy of inserting a single ion into the channel, i.e., the potential of mean force along the permeation pathway. In this way the dynamic flexibility of the channel environment is approximately accounted for. The PMF profile of the ion along the Gramicidin A channel is obtained by combining an equilibrium molecular dynamics (MD) simulation that samples dynamic protein configurations when an ion resides at a particular location in the channel with a continuum electrostatics calculation of the free energy. The diffusion coefficient of a potassium ion within the channel is also calculated using the MD trajectory. Therefore, except for a reasonable choice of dielectric constants, no direct fitting parameters enter into this model. The results of our study reveal that the channel response to the permeating ion produces significant electrostatic stabilization of the ion inside the channel. The dielectric self-energy of the ion remains essentially unchanged in the course of the MD simulation, indicating that no substantial changes in the protein geometry occur as the ion passes through it. Also, the model accounts for the experimentally observed saturation of ion current with increase of the electrolyte concentration, in contrast to the predictions of standard PNP theory.

摘要

提出了一种用于计算通过已知结构蛋白质通道的离子电流的复合连续介质理论,该理论纳入了有关通道动力学的信息。该方法用于预测通过短杆菌肽A离子通道的电流,短杆菌肽A离子通道是一种狭窄的孔道,传统连续介质理论在其中的适用性存在疑问。所提出的方法利用了泊松-能斯特-普朗克(PNP)理论的修正版本,即平均力势-泊松-能斯特-普朗克理论(PMFPNP)来计算离子电流。与标准PNP一样,离子渗透被建模为在自洽静电势中的连续漂移-扩散过程。然而,在PMFPNP中,通过纳入将单个离子插入通道的自由能,即沿渗透途径的平均力势,将有关蛋白质和周围介质动态弛豫的信息纳入离子渗透模型。通过这种方式,大致考虑了通道环境的动态灵活性。通过将平衡分子动力学(MD)模拟与自由能的连续静电计算相结合,获得离子沿短杆菌肽A通道的PMF分布,其中MD模拟在离子位于通道中特定位置时对动态蛋白质构型进行采样。还使用MD轨迹计算通道内钾离子的扩散系数。因此,除了合理选择介电常数外,该模型没有直接的拟合参数。我们的研究结果表明,通道对渗透离子的响应会在通道内产生显著的离子静电稳定作用。在MD模拟过程中,离子的介电自能基本保持不变,这表明当离子通过时,蛋白质几何结构没有发生实质性变化。此外,与标准PNP理论的预测相反,该模型解释了实验观察到的离子电流随电解质浓度增加而饱和的现象。

相似文献

2
Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels.
Biophys J. 2003 Jun;84(6):3594-606. doi: 10.1016/S0006-3495(03)75091-7.
3
Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels.
IEEE Trans Nanobioscience. 2005 Mar;4(1):81-93. doi: 10.1109/tnb.2004.842495.
4
Role of protein flexibility in ion permeation: a case study in gramicidin A.
Biophys J. 2006 Apr 1;90(7):2285-96. doi: 10.1529/biophysj.105.073205. Epub 2006 Jan 13.
5
Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
Biophys J. 2002 Sep;83(3):1348-60. doi: 10.1016/S0006-3495(02)73905-2.
6
Influence of protein flexibility on the electrostatic energy landscape in gramicidin A.
Eur Biophys J. 2005 May;34(3):208-16. doi: 10.1007/s00249-004-0442-z. Epub 2004 Nov 5.
9
Permeation in ion channels: the interplay of structure and theory.
Trends Neurosci. 2004 Jun;27(6):308-14. doi: 10.1016/j.tins.2004.03.013.

引用本文的文献

1
Counter-Intuitive Features of Particle Dynamics in Nanopores.
Int J Mol Sci. 2023 Nov 3;24(21):15923. doi: 10.3390/ijms242115923.
2
Opening of glutamate receptor channel to subconductance levels.
Nature. 2022 May;605(7908):172-178. doi: 10.1038/s41586-022-04637-w. Epub 2022 Apr 20.
3
Molecular Mean-Field Theory of Ionic Solutions: A Poisson-Nernst-Planck-Bikerman Model.
Entropy (Basel). 2020 May 14;22(5):550. doi: 10.3390/e22050550.
4
Membrane Position Dependency of the pK and Conductivity of the Protein Ion Channel.
J Membr Biol. 2018 Jun;251(3):393-404. doi: 10.1007/s00232-018-0013-3. Epub 2018 Jan 16.
5
Electrostatics of non-neutral biological microdomains.
Sci Rep. 2017 Sep 12;7(1):11269. doi: 10.1038/s41598-017-11590-6.
6
The new nanophysiology: regulation of ionic flow in neuronal subcompartments.
Nat Rev Neurosci. 2015 Nov;16(11):685-92. doi: 10.1038/nrn4022. Epub 2015 Oct 14.
7
Modeling Electronic Polarizability Changes in the Course of a Magnesium Ion Water Ligand Exchange Process.
J Phys Chem B. 2015 Aug 13;119(32):10275-86. doi: 10.1021/acs.jpcb.5b01295. Epub 2015 Jul 31.
8
Multiscale Multiphysics and Multidomain Models I: Basic Theory.
J Theor Comput Chem. 2013 Dec;12(8). doi: 10.1142/S021963361341006X.
9
Interacting ions in biophysics: real is not ideal.
Biophys J. 2013 May 7;104(9):1849-66. doi: 10.1016/j.bpj.2013.03.049.
10
Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.
Commun Comput Phys. 2013 Jan 1;13(1):285-324. doi: 10.4208/cicp.050511.050811s. Epub 2012 Jun 12.

本文引用的文献

1
Theoretical and computational models of ion channels.
Curr Opin Struct Biol. 2002 Apr;12(2):182-9. doi: 10.1016/s0959-440x(02)00307-x.
2
3
Simulation approaches to ion channel structure-function relationships.
Q Rev Biophys. 2001 Nov;34(4):473-561. doi: 10.1017/s0033583501003729.
4
Cardiac channelopathies.
Nature. 2002 Jan 10;415(6868):213-8. doi: 10.1038/415213a.
5
Bacterial ion channels and their eukaryotic homologues.
Bioessays. 2001 Dec;23(12):1148-58. doi: 10.1002/bies.10017.
7
Hierarchical approach to predicting permeation in ion channels.
Biophys J. 2001 Nov;81(5):2473-83. doi: 10.1016/S0006-3495(01)75893-6.
8
Ion channels and their functional role in vascular endothelium.
Physiol Rev. 2001 Oct;81(4):1415-59. doi: 10.1152/physrev.2001.81.4.1415.
9
Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 2):036116. doi: 10.1103/PhysRevE.64.036116. Epub 2001 Aug 28.
10
Ion channels and epilepsy.
Am J Med Genet. 2001 Summer;106(2):146-59. doi: 10.1002/ajmg.1582.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验