Suppr超能文献

连续介质静电学无法描述短杆菌肽通道中的离子渗透。

Continuum electrostatics fails to describe ion permeation in the gramicidin channel.

作者信息

Edwards Scott, Corry Ben, Kuyucak Serdar, Chung Shin-Ho

机构信息

Protein Dynamics Unit, Department of Physics, Faculty of Science, Australian National University, Canberra, A.C.T. 0200, Australia.

出版信息

Biophys J. 2002 Sep;83(3):1348-60. doi: 10.1016/S0006-3495(02)73905-2.

Abstract

We investigate the validity of continuum electrostatics in the gramicidin A channel using a recently determined high-resolution structure. The potential and electric field acting on ions in and around the channel are computed by solving Poisson's equation. These are then used in Brownian dynamics simulations to obtain concentration profiles and the current passing through the channel. We show that regardless of the effective dielectric constant used for water in the channel or the channel protein, it is not possible to reproduce all the experimental data on gramicidin A; thus, continuum electrostatics cannot provide a valid framework for the description of ion dynamics in gramicidin channels. Using experimental data and molecular dynamics simulations as guides, we have constructed potential energy profiles that can satisfactorily describe the available physiological data. These profiles provide useful benchmarks for future potential of mean force calculations of permeating ions from molecular dynamics simulations of gramicidin A. They also offer a convenient starting point for studying structure-function relationships in modified gramicidin channels.

摘要

我们利用最近确定的高分辨率结构研究了短杆菌肽A通道中连续介质静电学的有效性。通过求解泊松方程计算作用于通道内及周围离子的电势和电场。然后将这些结果用于布朗动力学模拟,以获得浓度分布和通过通道的电流。我们表明,无论用于通道内水或通道蛋白的有效介电常数如何,都不可能重现关于短杆菌肽A的所有实验数据;因此,连续介质静电学不能为描述短杆菌肽通道中的离子动力学提供一个有效的框架。以实验数据和分子动力学模拟为指导,我们构建了能够令人满意地描述现有生理学数据的势能分布。这些分布为未来从短杆菌肽A的分子动力学模拟计算渗透离子的平均力势提供了有用的基准。它们还为研究修饰的短杆菌肽通道中的结构-功能关系提供了一个便利的起点。

相似文献

1
Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
Biophys J. 2002 Sep;83(3):1348-60. doi: 10.1016/S0006-3495(02)73905-2.
2
Role of protein flexibility in ion permeation: a case study in gramicidin A.
Biophys J. 2006 Apr 1;90(7):2285-96. doi: 10.1529/biophysj.105.073205. Epub 2006 Jan 13.
4
Influence of protein flexibility on the electrostatic energy landscape in gramicidin A.
Eur Biophys J. 2005 May;34(3):208-16. doi: 10.1007/s00249-004-0442-z. Epub 2004 Nov 5.
7
Noncontact dipole effects on channel permeation. VI. 5F- and 6F-Trp gramicidin channel currents.
Biophys J. 2002 Oct;83(4):1974-86. doi: 10.1016/S0006-3495(02)73959-3.
8
Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy.
Biophys J. 1995 Mar;68(3):876-92. doi: 10.1016/S0006-3495(95)80264-X.
9
Semi-Markov models for brownian dynamics permeation in biological ion channels.
IEEE/ACM Trans Comput Biol Bioinform. 2011 Jan-Mar;8(1):273-81. doi: 10.1109/TCBB.2008.136.
10
Brownian dynamics study of ion transport in the vestibule of membrane channels.
Biophys J. 1998 Jan;74(1):37-47. doi: 10.1016/S0006-3495(98)77764-1.

引用本文的文献

1
Molecular dynamics simulations of membrane proteins.
Biophys Rev. 2012 Sep;4(3):271-282. doi: 10.1007/s12551-012-0084-9. Epub 2012 Sep 1.
2
Computational Investigation of the Effect of Lipid Membranes on Ion Permeation in Gramicidin A.
Membranes (Basel). 2016 Mar 18;6(1):20. doi: 10.3390/membranes6010020.
3
Density-functional theory study of gramicidin A ion channel geometry and electronic properties.
J R Soc Interface. 2013 Sep 25;10(89):20130547. doi: 10.1098/rsif.2013.0547. Print 2013 Dec 6.
5
Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.
Commun Comput Phys. 2013 Jan 1;13(1):285-324. doi: 10.4208/cicp.050511.050811s. Epub 2012 Jun 12.
6
Physics of ion channels.
J Biol Phys. 2003 Dec;29(4):429-46. doi: 10.1023/A:1027309113522.
7
Computational design of a carbon nanotube fluorofullerene biosensor.
Sensors (Basel). 2012 Oct 12;12(10):13720-35. doi: 10.3390/s121013720.
8
Obstructing toxin pathways by targeted pore blockage.
Chem Rev. 2012 Dec 12;112(12):6388-430. doi: 10.1021/cr300141q. Epub 2012 Oct 11.
9
Modeling and simulation of ion channels.
Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4.
10
Quantum dynamics in continuum for proton transport--generalized correlation.
J Chem Phys. 2012 Apr 7;136(13):134109. doi: 10.1063/1.3698598.

本文引用的文献

1
Reservoir boundaries in Brownian dynamics simulations of ion channels.
Biophys J. 2002 Apr;82(4):1975-84. doi: 10.1016/S0006-3495(02)75546-X.
3
Noncontact dipole effects on channel permeation. V. Computed potentials for fluorinated gramicidin.
Biophys J. 2001 Sep;81(3):1255-64. doi: 10.1016/S0006-3495(01)75783-9.
4
Mechanisms of permeation and selectivity in calcium channels.
Biophys J. 2001 Jan;80(1):195-214. doi: 10.1016/S0006-3495(01)76007-9.
5
Ion channels, permeation, and electrostatics: insight into the function of KcsA.
Biochemistry. 2000 Nov 7;39(44):13295-306. doi: 10.1021/bi001567v.
6
A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels.
Biophys J. 2000 Aug;79(2):788-801. doi: 10.1016/S0006-3495(00)76336-3.
10
Brownian dynamics simulation of ion flow through porin channels.
J Mol Biol. 1999 Dec 17;294(5):1159-67. doi: 10.1006/jmbi.1999.3326.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验