Gradilone Sergio A, García Fabiana, Huebert Robert C, Tietz Pamela S, Larocca M Cecilia, Kierbel Arlinet, Carreras Flavia I, Larusso Nicholas F, Marinelli Raúl A
Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.
Hepatology. 2003 Jun;37(6):1435-41. doi: 10.1053/jhep.2003.50241.
Although glucagon is known to stimulate the cyclic adenosine monophosphate (cAMP)-mediated hepatocyte bile secretion, the precise mechanisms accounting for this choleretic effect are unknown. We recently reported that hepatocytes express the water channel aquaporin-8 (AQP8), which is located primarily in intracellular vesicles, and its relocalization to plasma membranes can be induced with dibutyryl cAMP. In this study, we tested the hypothesis that glucagon induces the trafficking of AQP8 to the hepatocyte plasma membrane and thus increases membrane water permeability. Immunoblotting analysis in subcellular fractions from isolated rat hepatocytes indicated that glucagon caused a significant, dose-dependent increase in the amount of AQP8 in plasma membranes (e.g., 102% with 1 micromol/L glucagon) and a simultaneous decrease in intracellular membranes (e.g., 38% with 1 micromol/L glucagon). Confocal immunofluorescence microscopy in cultured hepatocytes confirmed the glucagon-induced redistribution of AQP8 from intracellular vesicles to plasma membrane. Polarized hepatocyte couplets showed that this redistribution was specifically to the canalicular domain. Glucagon also significantly increased hepatocyte membrane water permeability by about 70%, which was inhibited by the water channel blocker dimethyl sulfoxide (DMSO). The inhibitors of protein kinase A, H-89, and PKI, as well as the microtubule blocker colchicine, prevented the glucagon effect on both AQP8 redistribution to hepatocyte surface and cell membrane water permeability. In conclusion, our data suggest that glucagon induces the protein kinase A and microtubule-dependent translocation of AQP8 water channels to the hepatocyte canalicular plasma membrane, which in turn leads to an increase in membrane water permeability. These findings provide evidence supporting the molecular mechanisms of glucagon-induced hepatocyte bile secretion.
尽管已知胰高血糖素可刺激环磷酸腺苷(cAMP)介导的肝细胞胆汁分泌,但其产生这种利胆作用的确切机制尚不清楚。我们最近报道,肝细胞表达水通道水通道蛋白8(AQP8),其主要位于细胞内囊泡中,用二丁酰cAMP可诱导其重新定位到质膜。在本研究中,我们检验了以下假设:胰高血糖素诱导AQP8转运至肝细胞质膜,从而增加膜水通透性。对分离的大鼠肝细胞亚细胞组分进行免疫印迹分析表明,胰高血糖素导致质膜中AQP8的量显著且呈剂量依赖性增加(例如,1 μmol/L胰高血糖素时增加102%),同时细胞内膜中AQP8的量减少(例如,1 μmol/L胰高血糖素时减少38%)。对培养的肝细胞进行共聚焦免疫荧光显微镜检查证实了胰高血糖素诱导的AQP8从细胞内囊泡重新分布到质膜。极化的肝细胞偶联物显示这种重新分布特异性地发生在胆小管区域。胰高血糖素还使肝细胞膜水通透性显著增加约70%,这被水通道阻滞剂二甲基亚砜(DMSO)抑制。蛋白激酶A抑制剂H-89和PKI以及微管阻滞剂秋水仙碱可阻止胰高血糖素对AQP8重新分布至肝细胞表面和细胞膜水通透性的作用。总之,我们的数据表明,胰高血糖素诱导蛋白激酶A和微管依赖性的AQP8水通道转运至肝细胞胆小管质膜,进而导致膜水通透性增加。这些发现为胰高血糖素诱导的肝细胞胆汁分泌的分子机制提供了证据支持。