Annerén Cecilia, Lindholm Cecilia K, Kriz Vitezslav, Welsh Michael
Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
Curr Mol Med. 2003 Jun;3(4):313-24. doi: 10.2174/1566524033479744.
Recent experiments have unravelled novel signal transduction pathways that involve the SRC homology 2 (SH2) domain adapter protein SHB. SHB is ubiquitously expressed and contains proline rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites and an SH2 domain and serves a role in generating signaling complexes in response to tyrosine kinase activation. SHB mediates certain responses in platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. Upstream of SHB in some cells lies the SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK). FRK/RAK and SHB exert similar effects when overexpressed in rat phaeochromocytoma (PC12) and beta-cells, where they both induce PC12 cell differentiation and beta-cell proliferation. Furthermore, beta-cell apoptosis is augmented by these proteins under conditions that cause beta-cell degeneration. The FRK/RAK-SHB responses involve FAK and insulin receptor substrates (IRS) -1 and -2. Besides regulating apoptosis, proliferation and differentiation, SHB is also a component of the T cell receptor (TCR) signaling response. In Jurkat T cells, SHB links several signaling components with the TCR and is thus required for IL-2 production. In endothelial cells, SHB both promotes apoptosis under conditions that are anti-angiogenic, but is also required for proper mitogenicity, spreading and tubular morphogenesis. In embryonic stem cells, dominant-negative SHB (R522K) prevents early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon, suggesting a role of SHB in development. In summary, SHB is a versatile signal transduction molecule that produces diverse biological responses in different cell types under various conditions. SHB operates downstream of GTK in cells that express this kinase.
近期实验揭示了涉及SRC同源2(SH2)结构域衔接蛋白SHB的新型信号转导途径。SHB广泛表达,含有富含脯氨酸的基序、磷酸酪氨酸结合(PTB)结构域、酪氨酸磷酸化位点以及一个SH2结构域,在响应酪氨酸激酶激活时发挥生成信号复合物的作用。SHB介导血小板衍生生长因子(PDGF)受体、成纤维细胞生长因子(FGF)受体、神经生长因子(NGF)受体TRKA、T细胞受体、白细胞介素-2(IL-2)受体和粘着斑激酶(FAK)信号传导中的某些反应。在某些细胞中,SHB的上游是SRC样FYN相关激酶FRK/RAK(也称为BSK/IYK或GTK)。当在大鼠嗜铬细胞瘤(PC12)细胞和β细胞中过表达时,FRK/RAK和SHB发挥相似的作用,它们都能诱导PC12细胞分化和β细胞增殖。此外,在导致β细胞变性的条件下,这些蛋白会增强β细胞凋亡。FRK/RAK-SHB反应涉及FAK和胰岛素受体底物(IRS)-1和-2。除了调节细胞凋亡、增殖和分化外,SHB还是T细胞受体(TCR)信号反应的一个组成部分。在Jurkat T细胞中,SHB将多个信号成分与TCR连接起来,因此是IL-2产生所必需的。在内皮细胞中,SHB在抗血管生成的条件下既促进细胞凋亡,但对于正常的促有丝分裂、铺展和管状形态发生也是必需的。在胚胎干细胞中,显性负性SHB(R522K)可阻止胚状体的早期空化,并减少向表达白蛋白、淀粉酶、胰岛素和胰高血糖素的细胞分化,这表明SHB在发育过程中发挥作用。总之,SHB是一种多功能信号转导分子,在不同条件下的不同细胞类型中产生多种生物学反应。在表达这种激酶的细胞中,SHB在GTK的下游发挥作用。