Suppr超能文献

Parameter renormalization of maps based on potential function.

作者信息

Matsuba Ikuo

机构信息

Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi 263, Japan.

出版信息

Chaos. 1997 Jun;7(2):278-289. doi: 10.1063/1.166227.

Abstract

A systematic way for deriving the parameter renormalization group equation for one-dimensional maps is presented and the critical behavior of periodic doubling is investigated. Introducing a formal potential function in one-parameter cases, it is shown that accumulation points correspond to local potential maxima and universal constants are easily determined. The estimates of accumulation points and universal constants match the known values asymptotically when the order of potential grows large. The potential function shows scaling in the parameter space with the universal convergent rate at the accumulation point similar to the Feigenbaum universal function. For two-parameter cases, a parameter reduction transformation is found to be useful to determine some important fixed points. A locally defined potential function is introduced and its scaling property is discussed. (c) 1997 American Institute of Physics.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验