Suppr超能文献

气固流化中的混沌抑制

Chaos suppression in gas-solid fluidization.

作者信息

Pence Deborah V., Beasley Donald E.

机构信息

University of Rhode Island, Department of Mechanical Engineering, 92 Upper College Road, Kingston, Rhode Island 02881.

出版信息

Chaos. 1998 Jun;8(2):514-519. doi: 10.1063/1.166332.

Abstract

Fluidization in granular materials occurs primarily as a result of a dynamic balance between gravitational forces and forces resulting from the flow of a fluid through a bed of discrete particles. For systems where the fluidizing medium and the particles have significantly different densities, density wave instabilities create local pockets of very high void fraction termed bubbles. The fluidization regime is termed the bubbling regime. Such a system is appropriately termed a self-excited nonlinear system. The present study examines chaos suppression resulting from an opposing oscillatory flow in gas-solid fluidization. Time series data representing local, instantaneous pressure were acquired at the surface of a horizontal cylinder submerged in a bubbling fluidized bed. The particles had a weight mean diameter of 345 &mgr;m and a narrow size distribution. The state of fluidization corresponded to the bubbling regime and total air flow rates employed in the present study ranged from 10% to 40% greater than that required for minimum fluidization. The behavior of time-varying local pressure in fluidized beds in the absence of a secondary flow is consistent with deterministic chaos. Kolmogorov entropy estimates from local, instantaneous pressure suggest that the degree of chaotic behavior can be substantially suppressed by the presence of an opposing, oscillatory secondary flow. Pressure signals clearly show a "phase-locking" phenomenon coincident with the imposed frequency. In the present study, the greatest degree of suppression occurred for operating conditions with low primary and secondary flow rates, and a secondary flow oscillation frequency of 15 Hz. (c) 1998 American Institute of Physics.

摘要

颗粒材料中的流化主要是由于重力与流体流经离散颗粒床层所产生的力之间的动态平衡所致。对于流化介质和颗粒密度差异显著的系统,密度波不稳定性会产生局部高孔隙率区域,称为气泡。这种流化状态称为鼓泡状态。这样的系统被恰当地称为自激非线性系统。本研究考察了气固流化中反向振荡流导致的混沌抑制。在浸没于鼓泡流化床中的水平圆柱体表面获取了代表局部瞬时压力的时间序列数据。颗粒的重量平均直径为345μm,粒径分布较窄。流化状态对应于鼓泡状态,本研究中使用的总空气流速比最小流化所需流速高10%至40%。在没有二次流的情况下,流化床中时变局部压力的行为与确定性混沌一致。根据局部瞬时压力估算的柯尔莫哥洛夫熵表明,反向振荡二次流的存在可显著抑制混沌行为程度。压力信号清晰地显示出与外加频率一致的“锁相”现象。在本研究中,对于一次流和二次流流速较低且二次流振荡频率为15Hz的运行条件,混沌抑制程度最大。(c)1998美国物理研究所。

相似文献

1
Chaos suppression in gas-solid fluidization.气固流化中的混沌抑制
Chaos. 1998 Jun;8(2):514-519. doi: 10.1063/1.166332.
2
High viscosity gas fluidization of fine particles: An extended window of quasihomogeneous flow.细颗粒的高粘度气体流化:准均相流的扩展窗口。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021302. doi: 10.1103/PhysRevE.74.021302. Epub 2006 Aug 8.
7
Effect of particle size and interparticle force on the fluidization behavior of gas-fluidized beds.颗粒尺寸和颗粒间作用力对气体流化床流化行为的影响。
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 1):051305. doi: 10.1103/PhysRevE.67.051305. Epub 2003 May 23.
8
Quantitative flow visualization of fluidized-bed heat exchanger by neutron radiography.
Appl Radiat Isot. 2004 Oct;61(4):715-24. doi: 10.1016/j.apradiso.2004.03.099.
9
Types of gas fluidization of cohesive granular materials.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Mar;75(3 Pt 1):031306. doi: 10.1103/PhysRevE.75.031306. Epub 2007 Mar 26.
10
Effect of vibration on the stability of a gas-fluidized bed of fine powder.振动对细粉气固流化床稳定性的影响。
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 1):021302. doi: 10.1103/PhysRevE.64.021302. Epub 2001 Jul 18.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验