Kandrup Henry E., Siopis Christos, Contopoulos G., Dvorak Rudolf
Department of Astronomy, and Department of Physics and Institute for Fundamental Theory, University of Florida, Gainesville, Florida 32611.
Chaos. 1999 Jun;9(2):381-392. doi: 10.1063/1.166415.
This paper summarizes an investigation of the statistical properties of orbits escaping from three different two-degrees-of-freedom Hamiltonian systems which exhibit global stochasticity. Each time-independent H=H(0)+ varepsilon H('), with H(0) an integrable Hamiltonian and varepsilon H(') a nonintegrable correction, not necessarily small. Despite possessing very different symmetries, ensembles of orbits in all three potentials exhibit similar behavior. For varepsilon below a critical varepsilon (0), escapes are impossible energetically. For somewhat higher values, escape is allowed energetically but still many orbits never escape. The escape probability P computed for an arbitrary orbit ensemble decays toward zero exponentially. At or near a critical value varepsilon (1)> varepsilon (0) there is a rather abrupt qualitative change in behavior. Above varepsilon (1), P typically exhibits (1) an initial rapid evolution toward a nonzero P(0)( varepsilon ), the value of which is independent of the detailed choice of initial conditions, followed by (2) a much slower subsequent decay toward zero which, in at least one case, is well fit by a power law P(t) proportional, variant t(-&mgr;), with &mgr; approximately 0.35-0.40. In all three cases, P(0) and the time T required to converge toward P(0) scale as powers of varepsilon - varepsilon (1), i.e., P(0) proportional, variant ( varepsilon - varepsilon (1))(alpha) and T proportional, variant ( varepsilon - varepsilon (1))(beta), and T also scales in the linear size r of the region sampled for initial conditions, i.e., T proportional, variant r(-delta). To within statistical uncertainties, the best fit values of the critical exponents alpha, beta, and delta appear to be the same for all three potentials, namely alpha approximately 0.5, beta approximately 0.4, and delta approximately 0.1, and satisfy alpha-beta-delta approximately 0. The transitional behavior observed near varepsilon (1) is attributed to the breakdown of some especially significant KAM tori or cantori. The power law behavior at late times is interpreted as reflecting intrinsic diffusion of chaotic orbits through cantori surrounding islands of regular orbits. (c) 1999 American Institute of Physics.
本文总结了对从三个呈现全局随机性的不同二自由度哈密顿系统逃逸的轨道统计特性的一项研究。每个与时间无关的哈密顿量(H = H(0) + \varepsilon H('),其中(H(0))是一个可积哈密顿量,(\varepsilon H(')是一个不可积修正项,不一定很小。尽管具有非常不同的对称性,但所有三个势中的轨道系综都表现出相似的行为。对于低于临界值(\varepsilon(0))的(\varepsilon),能量上不可能发生逃逸。对于稍高的值,能量上允许逃逸,但仍有许多轨道永远不会逃逸。为任意轨道系综计算的逃逸概率(P)呈指数衰减至零。在临界值(\varepsilon(1) > \varepsilon(0))处或附近,行为会发生相当突然的定性变化。高于(\varepsilon(1))时,(P)通常表现为:(1) 朝着非零的(P(0)(\varepsilon))有一个初始快速演化,其值与初始条件的详细选择无关,接着是 (2) 随后朝着零的慢得多的衰减,在至少一种情况下,这很好地符合幂律(P(t))与(t^{-\mu})成比例,其中(\mu)约为(0.35 - 0.40)。在所有三种情况下,(P(0))以及收敛到(P(0))所需的时间(T)与(\varepsilon - \varepsilon(1))的幂次成比例,即(P(0))与((\varepsilon - \varepsilon(1))^{\alpha})成比例,(T)与((\varepsilon - \varepsilon(1))^{\beta})成比例,并且(T)也与初始条件采样区域的线性尺寸(r)成比例,即(T)与(r^{-\delta})成比例。在统计不确定性范围内,对于所有三个势,临界指数(\alpha)、(\beta)和(\delta)的最佳拟合值似乎相同,即(\alpha)约为(0.5),(\beta)约为(0.4),(\delta)约为(0.1),并且满足(\alpha - \beta - \delta)约为(0)。在(\varepsilon(1))附近观察到的过渡行为归因于一些特别重要的KAM环面或cantori的破裂。后期的幂律行为被解释为反映了混沌轨道通过围绕规则轨道岛的cantori的内在扩散。(c) 1999美国物理研究所。