Rom-Kedar Vered
Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel.
Chaos. 1997 Mar;7(1):148-158. doi: 10.1063/1.166246.
A parabolic resonance is formed when an integrable two-degrees-of-freedom (d.o.f.) Hamiltonian system possessing a circle of parabolic fixed points is perturbed. It is proved that its occurrence is generic for one parameter families (co-dimension one phenomenon) of near-integrable, two d.o.f. Hamiltonian systems. Numerical experiments indicate that the motion near a parabolic resonance exhibits a new type of chaotic behavior which includes instabilities in some directions and long trapping times in others. Moreover, in a degenerate case, near a flat parabolic resonance, large scale instabilities appear. A model arising from an atmospherical study is shown to exhibit flat parabolic resonance. This supplies a simple mechanism for the transport of particles with small (i.e. atmospherically relevant) initial velocities from the vicinity of the equator to high latitudes. A modification of the model which allows the development of atmospherical jets unfolds the degeneracy, yet traces of the flat instabilities are clearly observed. (c) 1997 American Institute of Physics.
当一个具有抛物型不动点圆的可积二维自由度哈密顿系统受到微扰时,会形成抛物型共振。证明了对于近可积的二维自由度哈密顿系统的单参数族(余维数为一的现象),抛物型共振的出现是普遍存在的。数值实验表明,抛物型共振附近的运动呈现出一种新型的混沌行为,包括在某些方向上的不稳定性以及在其他方向上的长时间捕获。此外,在退化情况下,靠近平坦抛物型共振时会出现大规模不稳定性。一个源于大气研究的模型被证明呈现出平坦抛物型共振。这为具有小(即与大气相关)初始速度的粒子从赤道附近传输到高纬度地区提供了一个简单的机制。对该模型的一种修改允许大气急流的发展,消除了退化性,但仍能清楚地观察到平坦不稳定性的痕迹。(c)1997美国物理研究所。