Departamento de Física e Matemática, Univ. Federal de São João del-Rei, UFSJ, Rod. MG 443, Km 7, Fazenda do Cadete, 36420-000 Ouro Branco, MG, Brazil.
Chaos. 2012 Dec;22(4):043148. doi: 10.1063/1.4772997.
Some dynamical properties of an ensemble of trajectories of individual (non-interacting) classical particles of mass m and charge q interacting with a time-dependent electric field and suffering the action of a constant magnetic field are studied. Depending on both the amplitude of oscillation of the electric field and the intensity of the magnetic field, the phase space of the model can either exhibit: (i) regular behavior or (ii) a mixed structure, with periodic islands of regular motion, chaotic seas characterized by positive Lyapunov exponents, and invariant Kolmogorov-Arnold-Moser curves preventing the particle to reach unbounded energy. We define an escape window in the chaotic sea and study the transport properties for chaotic orbits along the phase space by the use of scaling formalism. Our results show that the escape distribution and the survival probability obey homogeneous functions characterized by critical exponents and present universal behavior under appropriate scaling transformations. We show the survival probability decays exponentially for small iterations changing to a slower power law decay for large time, therefore, characterizing clearly the effects of stickiness of the islands and invariant tori. For the range of parameters used, our results show that the crossover from fast to slow decay obeys a power law and the behavior of survival orbits is scaling invariant.
研究了由单个(非相互作用)经典粒子组成的轨迹系综的一些动力学性质,这些粒子的质量为 m,电荷为 q,与随时间变化的电场相互作用,并受到恒定磁场的作用。根据电场的振荡幅度和磁场的强度,模型的相空间可能表现出:(i)规则行为或(ii)混合结构,具有周期性的规则运动岛屿、具有正 Lyapunov 指数的混沌海以及阻止粒子达到无限能量的不变 Kolmogorov-Arnold-Moser 曲线。我们在混沌海中定义了一个逃逸窗口,并通过使用标度形式主义研究了混沌轨道在相空间中的输运性质。我们的结果表明,逃逸分布和生存概率服从具有临界指数的齐次函数,并在适当的标度变换下呈现出普遍行为。我们表明,对于小迭代,生存概率呈指数衰减,对于大时间,衰减变为较慢的幂律衰减,因此,清楚地表明了岛屿和不变环面的粘性的影响。对于使用的参数范围,我们的结果表明,从快速衰减到缓慢衰减的转变遵循幂律,并且生存轨道的行为是标度不变的。