Castiglione P., Cencini M., Vulpiani A., Zambianchi E.
Dipartimento di Fisica, Universita "La Sapienza," and INFM, Unita di Roma 1, P.le A. Moro 2, I-00185, Roma, Italy.
Chaos. 1999 Dec;9(4):871-879. doi: 10.1063/1.166459.
In the framework of chaotic scattering we analyze passive tracer transport in finite systems. In particular, we study models with open streamlines and a finite number of recirculation zones. In the nontrivial case with a small number of recirculation zones a description by means of asymptotic quantities (such as the eddy diffusivity) is not appropriate. The nonasymptotic properties of dispersion are characterized by means of the exit time statistics, which shows strong sensitivity on initial conditions. This yields a probability distribution function with long tails, making impossible a characterization in terms of a unique typical exit time. (c) 1999 American Institute of Physics.
在混沌散射的框架下,我们分析了有限系统中被动示踪剂的输运。特别地,我们研究了具有开放流线和有限数量再循环区域的模型。在再循环区域数量较少的非平凡情况下,用渐近量(如涡扩散率)进行描述是不合适的。扩散的非渐近性质通过出射时间统计来表征,它对初始条件表现出强烈的敏感性。这产生了一个具有长尾的概率分布函数,使得无法用唯一的典型出射时间来进行表征。(c)1999美国物理研究所。