Suppr超能文献

输运与混合的非渐近性质

Nonasymptotic properties of transport and mixing.

作者信息

Boffetta G., Celani A., Cencini M., Lacorata G., Vulpiani A.

机构信息

Dipartimento di Fisica Generale and Istituto Nazionale Fisica della Materia, Universita di Torino, Via Pietro Giuria 1, 10125 Torino, Italy.

出版信息

Chaos. 2000 Mar;10(1):50-60. doi: 10.1063/1.166475.

Abstract

We study relative dispersion of passive scalar in nonideal cases, i.e., in situations in which asymptotic techniques cannot be applied; typically when the characteristic length scale of the Eulerian velocity field is not much smaller than the domain size. Of course, in such a situation usual asymptotic quantities (the diffusion coefficients) do not give any relevant information about the transport mechanisms. On the other hand, we shall show that the Finite Size Lyapunov Exponent, originally introduced for the predictability problem, appears to be rather powerful in approaching the nonasymptotic transport properties. This technique is applied in a series of numerical experiments in simple flows with chaotic behaviors, in experimental data analysis of drifter and to study relative dispersion in fully developed turbulence. (c) 2000 American Institute of Physics.

摘要

我们研究非理想情况下被动标量的相对扩散,即无法应用渐近技术的情形;通常是当欧拉速度场的特征长度尺度不比域大小小很多时。当然,在这种情况下,通常的渐近量(扩散系数)并不能给出关于输运机制的任何相关信息。另一方面,我们将表明,最初为可预测性问题引入的有限尺寸李雅普诺夫指数,在处理非渐近输运性质方面似乎相当强大。该技术应用于一系列具有混沌行为的简单流动的数值实验、漂流器的实验数据分析以及研究充分发展湍流中的相对扩散。(c)2000美国物理研究所。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验