Suppr超能文献

Bifurcations of the trajectories at the saddle level in a Hamiltonian system generated by two coupled Schrodinger equations.

作者信息

Eleonsky V. M., Korolev V. G., Kulagin N. E., Shil'nikov L. P.

机构信息

Scientific Research Institute of Physical Problems, 103460 Moscow, Zelenograd, RussiaScientific Research Institute of Applied Mathematics and Cybernetics, 603005 Nizhnii Novgorod, Russia.

出版信息

Chaos. 1992 Oct;2(4):571-579. doi: 10.1063/1.165863.

Abstract

Bifurcations of the complex homoclinic loops of an equilibrium saddle point in a Hamiltonian dynamical system with two degrees of freedom are studied. It arises to pick out the stationary solutions in a system of two coupled nonlinear Schrodinger equations. Their relation to bifurcations of hyperbolic and elliptic periodic orbits at the saddle level is studied for varying structural parameters of the system. Series of complex loops are described whose existence is related to periodic orbits.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验