Langley Robert R, Ramirez Karen M, Tsan Rachel Z, Van Arsdall Melissa, Nilsson Monique B, Fidler Isaiah J
Department of Cancer Biology, The University of Texas M D Anderson Cancer Center, Houston, Texas 77030, USA.
Cancer Res. 2003 Jun 1;63(11):2971-6.
Microvascular endothelial cells play a critical role in tumor progression and metastasis by forming capillary networks that encourage tumor growth and by promoting the attachment of circulating tumor cells to the vascular wall of distant tissues. Efforts to study the molecular mechanisms that mediate these complex processes in different anatomical compartments have been impeded by difficulties in the isolation and propagation of endothelial cells from different organs. To overcome these limitations, we used two-color flow cytometry to identify and select microvascular endothelial cells from primary cultures obtained from different organs of mice whose tissues harbor a temperature-sensitive SV40 large T antigen (H-2K(b)-tsA58 mice; ImmortoMice). The selection strategy targeted cell populations expressing the inducible endothelial cell adhesion molecules, E-selectin and VCAM-1, and proved successful in generating microvascular endothelial cell lines from a number of different organs. When cultured under permissive temperatures (33 degrees C), individual cell lines displayed doubling times consistent with endothelial cells possessing an angiogenic phenotype. The transfer of endothelial cells to nonpermissive temperatures (37 degrees C) resulted in cell differentiation and the induction of a quiescent state. Established cell lines exhibited several inherent endothelial properties, including the expression of constitutive and inducible levels of endothelial cell adhesion molecules E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, internalization of acetylated low-density lipoprotein, and formation of loop structures on Matrigel surfaces. The immortalized endothelial cell lines established from H-2K(b)-tsA58 mice provide, for the first time, a cell culture system to examine factors regulating angiogenesis and tumor cell arrest in different organ systems.
微血管内皮细胞在肿瘤进展和转移中发挥着关键作用,它们通过形成促进肿瘤生长的毛细血管网络,以及促进循环肿瘤细胞附着于远处组织的血管壁来实现这一点。由于从不同器官分离和培养内皮细胞存在困难,因此研究介导不同解剖区域中这些复杂过程的分子机制的工作受到了阻碍。为了克服这些限制,我们使用双色流式细胞术从携带温度敏感型SV40大T抗原的小鼠(H-2K(b)-tsA58小鼠;永生小鼠)不同器官获得的原代培养物中鉴定和选择微血管内皮细胞。该选择策略针对表达可诱导内皮细胞粘附分子E-选择素和血管细胞粘附分子-1的细胞群体,并成功地从多个不同器官生成了微血管内皮细胞系。当在允许温度(33摄氏度)下培养时,各个细胞系的倍增时间与具有血管生成表型的内皮细胞一致。将内皮细胞转移到非允许温度(37摄氏度)会导致细胞分化并诱导静止状态。已建立的细胞系表现出几种固有的内皮特性,包括组成型和诱导型内皮细胞粘附分子E-选择素、细胞间粘附分子-1和血管细胞粘附分子-1的表达、乙酰化低密度脂蛋白的内化以及在基质胶表面形成环状结构。从H-2K(b)-tsA58小鼠建立的永生化内皮细胞系首次提供了一个细胞培养系统,用于研究调节不同器官系统中血管生成和肿瘤细胞停滞的因素。