Pieroux D, Mandel Paul
Optique Nonlinéaire Théorique, Université Libre de Bruxelles, Campus Plaine, Code Postale 231, 1050 Brussels, Belgium.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 2):056213. doi: 10.1103/PhysRevE.67.056213. Epub 2003 May 21.
We reduce the Lang-Kobayashi equations for a semiconductor laser with external optical feedback to a single complex delay-differential equation in the long delay-time limit. The reduced equation has a time-delayed linear term and a cubic instantaneous nonlinearity. There are only two parameters, the real linewidth enhancement factor and the complex feedback strength. The equation displays a very rich dynamics and can sustain steady, periodic, quasiperiodic, and chaotic regimes. We study the steady solutions analytically and analyze the periodic solutions by using a numerical continuation method. This leads to a bifurcation diagram of the steady and periodic solutions, stable and unstable. We illustrate the chaotic regimes by a direct numerical integration and show that low frequency fluctuations still occur.
在长延迟时间极限下,我们将具有外部光反馈的半导体激光器的朗-小林方程简化为一个单一的复延迟微分方程。简化后的方程具有一个延迟线性项和一个立方瞬时非线性项。只有两个参数,即实线宽增强因子和复反馈强度。该方程展现出非常丰富的动力学特性,能够维持稳态、周期、准周期和混沌状态。我们对稳态解进行解析研究,并使用数值延拓方法分析周期解。这得到了稳态和周期解的分岔图,包括稳定的和不稳定的。我们通过直接数值积分来说明混沌状态,并表明低频波动仍然存在。