Kim Sanguk, Chamberlain Aaron K, Bowie James U
Department of Chemistry and Biochemistry and UCLA-DOE Center for Genomics and Proteomics, Boyer Hall, University of California Los Angeles, 611 Charles E. Young Drive E, Room 655, Los Angeles, CA 90095-1570, USA.
J Mol Biol. 2003 Jun 13;329(4):831-40. doi: 10.1016/s0022-2836(03)00521-7.
We describe an effective procedure for modeling the structures of simple transmembrane helix homo-oligomers. The method differs from many previous approaches in that the only structural constraint we use to help select the correct model is the oligomerization state of the protein. The method involves the following steps: (1) perform 100-250 independent Monte Carlo energy minimizations of helix pairs to produce a large collection of well-packed structures; (2) filter the minimized structures to find those that are consistent with the expected symmetry of the oligomer; (3) cluster the structures that pass the symmetry filter; and (4) select a representative of the most populous cluster as the final prediction. We applied the method to the transmembrane helices of five proteins and compare our results to the available experimental data. Our predictions of glycophorin A, neu, the M2 channel and phospholamban resulted in a single model for each protein that agreed with the experimental results. In the case of erbB-2, however, we obtained three structurally distinct clusters of approximately equal sizes, so it was not possible to identify a clearly favored structure. This may reflect a real heterogeneity of packing modes for erbB-2, which is known to interact with different receptor subunits. Our method should be useful for obtaining structural models of transmembrane domains, improving our understanding of structure/function relationships for particular membrane proteins.
我们描述了一种用于模拟简单跨膜螺旋同型寡聚体结构的有效方法。该方法与许多先前的方法不同之处在于,我们用于帮助选择正确模型的唯一结构约束是蛋白质的寡聚化状态。该方法包括以下步骤:(1)对螺旋对进行100 - 250次独立的蒙特卡罗能量最小化,以产生大量紧密堆积的结构集合;(2)对最小化的结构进行筛选,以找到那些与寡聚体预期对称性一致的结构;(3)对通过对称性筛选的结构进行聚类;(4)选择最密集聚类的一个代表作为最终预测。我们将该方法应用于五种蛋白质的跨膜螺旋,并将我们的结果与现有的实验数据进行比较。我们对血型糖蛋白A、神经表皮生长因子受体(neu)、M2通道和受磷蛋白的预测,为每种蛋白质都得到了一个与实验结果一致的单一模型。然而,在erbB - 2的情况下,我们获得了三个大小大致相等的结构上不同的聚类,因此无法确定一个明显更受青睐的结构。这可能反映了erbB - 2包装模式的真正异质性,已知它与不同的受体亚基相互作用。我们的方法对于获得跨膜结构域的结构模型、增进我们对特定膜蛋白结构/功能关系的理解应该是有用的。