Medical Scientist Training Program, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1570, USA.
Protein Sci. 2011 Jul;20(7):1256-64. doi: 10.1002/pro.653. Epub 2011 Jun 2.
A hallmark of membrane protein structure is the large number of distorted transmembrane helices. Because of the prevalence of bends, it is important to not only understand how they are generated but also to learn how to predict their occurrence. Here, we find that there are local sequence preferences in kinked helices, most notably a higher abundance of proline, which can be exploited to identify bends from local sequence information. A neural network predictor identifies over two-thirds of all bends (sensitivity 0.70) with high reliability (specificity 0.89). It is likely that more structural data will allow for better helix distortion predictors with increased coverage in the future. The kink predictor, TMKink, is available at http://tmkinkpredictor.mbi.ucla.edu/.
膜蛋白结构的一个特点是大量扭曲的跨膜螺旋。由于弯曲的普遍性,不仅要了解它们是如何产生的,还要学习如何预测它们的发生。在这里,我们发现扭结螺旋中有局部序列偏好,最明显的是脯氨酸含量较高,可以利用这些偏好从局部序列信息中识别弯曲。神经网络预测器可以识别出超过三分之二的所有弯曲(敏感性 0.70),具有很高的可靠性(特异性 0.89)。随着未来更多结构数据的出现,可能会开发出具有更高覆盖率的更好的螺旋扭曲预测器。扭结预测器 TMKink 可在 http://tmkinkpredictor.mbi.ucla.edu/ 获得。