Shammah-Lagnado S J, Costa M S, Ricardo J A
Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
Neuroscience. 1992 Sep;50(2):403-25. doi: 10.1016/0306-4522(92)90433-3.
The afferent connections of the parvocellular reticular formation were systematically investigated in the rat with the aid of retrograde and anterograde horseradish peroxidase tracer techniques. The results indicate that the parvocellular reticular formation receives its main input from several territories of the cerebral cortex (namely the first motor, primary somatosensory and granular insular areas), districts of the reticular formation (including its contralateral counterpart, the intermediate reticular nucleus, the nucleus of Probst's bundle, the dorsal paragigantocellular nucleus, the alpha part of the gigantocellular reticular nucleus, the dorsal and ventral reticular nuclei of the medulla, and the mesencephalic reticular formation), the supratrigeminal nucleus and the deep cerebellar nuclei. Moderate to substantial input to the parvocellular reticular formation appears to come from the central amygdaloid nucleus, the parvocellular division of the red nucleus, and the orofacial and gustatory sensory cell groups (comprising the mesencephalic, principal and spinal trigeminal nuclei, and the rostral part of the nucleus of the solitary tract), whereas many other structures, including the substantia innominata, the field H2 of Forel, hypothalamic nuclei, the superior colliculus, the substantia nigra pars reticulata, the retrorubral field and the parabrachial complex, seem to represent relatively modest additional input sources. Some of these projections appear to be topographically distributed within the parvocellular reticular formation. From the present results it appears that the parvocellular reticular formation receives afferents from a restricted group of sensory structures. This finding calls into question the traditional characterization of the parvocellular reticular formation as an intermediate link between the sensory nuclei of the cranial nerves and the medial magnocellular reticular districts, identified as the effector components of the reticular apparatus. Some of the possible physiological correlates of the fiber connections of the parvocellular reticular formation in the context of oral motor behaviors, autonomic regulations, respiratory phenomena and sleep-waking mechanisms are briefly discussed.
借助逆行和顺行辣根过氧化物酶示踪技术,对大鼠的小细胞网状结构的传入连接进行了系统研究。结果表明,小细胞网状结构主要从大脑皮质的几个区域(即第一运动区、初级躯体感觉区和颗粒岛叶区)、网状结构的一些区域(包括其对侧对应区域、中间网状核、普罗布斯特束核、背侧旁巨细胞网状核、巨细胞网状核的α部、延髓的背侧和腹侧网状核以及中脑网状结构)、三叉上核和小脑深部核团接收输入。小细胞网状结构似乎从中杏仁核、红核的小细胞部以及口面部和味觉感觉细胞群(包括中脑、主三叉神经核和脊髓三叉神经核以及孤束核的嘴侧部)接收中等至大量的输入,而许多其他结构,包括无名质、Forel的H2区、下丘脑核、上丘、黑质网状部、红核后区和臂旁复合体,似乎是相对较小的额外输入源。其中一些投射似乎在小细胞网状结构内呈拓扑分布。从目前的结果来看,小细胞网状结构从一组有限的感觉结构接收传入纤维。这一发现对传统上将小细胞网状结构描述为脑神经感觉核与被确定为网状装置效应器成分的内侧大细胞网状区之间的中间环节提出了质疑。本文还简要讨论了小细胞网状结构的纤维连接在口腔运动行为、自主调节、呼吸现象和睡眠-觉醒机制方面的一些可能的生理相关性。