Rye D B, Lee H J, Saper C B, Wainer B H
Department of Pharmacological and Physiological Sciences, University of Chicago, Illinois 60637.
J Comp Neurol. 1988 Mar 15;269(3):315-41. doi: 10.1002/cne.902690302.
The medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum were investigated by employing (1) the anterograde autoradiographic methodology and (2) the retrograde transport of HRP and/or WGA-HRP in combination with choline acetyltransferase immunohistochemistry. The anterograde experiments identified five descending pathways from the mesopontine tegmentum: (1) Probst's tract, which descends in the dorsolateral reticular formation in close relation to the nucleus of the solitary tract; (2) a ventrolateral branch of Probst's tract that extends ventrolaterally alongside the spinal trigeminal nucleus; (3) a ventromedial branch of Probst's tract that extends ventromedially through the gigantocellular field of the medulla; (4) the medial reticulospinal tract, which descends in parallel with the medial longitudinal fasciculus and turns ventrolaterally along the dorsal surface of the inferior olive to enter the ventrolateral funiculus of the spinal cord; and (5) a crossed ventromedial pathway, which descends in a ventral paramedian position through the magnocellular field of the medulla. The origins of these pathways reflected a rough lateral-to-medial topography of mesopontine tegmental cell groups. The parabrachial nucleus, situated furthest laterally, for example, projected primarily through Probst's tract and its ventrolateral branch. The pedunculopontine tegmental nucleus, midbrain extrapyramidal area, and the subceruleal region, situated more medially, projected descending axons largely through the ventromedial branch of Probst's tract. The pontine tegmental field, situated furthest medially and ventromedially, was the largest contributor to the medial reticulospinal tract. The retrograde transport experiments confirmed these general organizational features. The combination of retrograde transport with choline acetyltransferase immunohistochemistry established that the cholinergic pedunculopontine tegmental nucleus contributes a large portion to the mesopontine tegmental innervation of the medullary reticular formation. A much smaller number of cholinergic pedunculopontine neurons project as far as the spinal cord. Spinal projections from the mesopontine tegmentum originate largely from non-cholinergic neurons of the midbrain extrapyramidal area, subceruleal region, Kölliker-Fuse division of the parabrachial nucleus, and pontine tegmental field.
采用(1)顺行性放射自显影方法和(2)HRP和/或WGA-HRP的逆行运输结合胆碱乙酰转移酶免疫组织化学,对脚桥被盖核和相邻中脑桥被盖的延髓和脊髓传出纤维进行了研究。顺行性实验确定了从中脑桥被盖发出的五条下行通路:(1)普罗布斯特束,在背外侧网状结构中下行,与孤束核关系密切;(2)普罗布斯特束的腹外侧分支,沿脊髓三叉神经核腹外侧延伸;(3)普罗布斯特束的腹内侧分支,经延髓巨细胞区腹内侧延伸;(4)内侧网状脊髓束,与内侧纵束平行下行,沿下橄榄背表面转向腹外侧,进入脊髓腹外侧索;(5)交叉腹内侧通路,经延髓巨细胞区在腹正中线位置下行。这些通路的起源反映了中脑桥被盖细胞群大致从外侧到内侧的拓扑结构。例如,位于最外侧的臂旁核主要通过普罗布斯特束及其腹外侧分支投射。位于更内侧的脚桥被盖核、中脑锥体外系区域和蓝斑下区域,其下行轴突主要通过普罗布斯特束的腹内侧分支投射。位于最内侧和腹内侧的脑桥被盖区是内侧网状脊髓束的最大贡献者。逆行运输实验证实了这些一般的组织学特征。逆行运输与胆碱乙酰转移酶免疫组织化学相结合表明,胆碱能脚桥被盖核对延髓网状结构的中脑桥被盖神经支配有很大贡献。投射到脊髓的胆碱能脚桥神经元数量要少得多。中脑桥被盖到脊髓的投射主要来自中脑锥体外系区域、蓝斑下区域、臂旁核的 Kölliker-Fuse 区和脑桥被盖区的非胆碱能神经元。