Suppr超能文献

Afferent connections of the nuclei reticularis pontis oralis and caudalis: a horseradish peroxidase study in the rat.

作者信息

Shammah-Lagnado S J, Negrão N, Silva B A, Ricardo J A

出版信息

Neuroscience. 1987 Mar;20(3):961-89. doi: 10.1016/0306-4522(87)90256-9.

Abstract

The afferent connections of the nuclei reticularis pontis oralis and caudalis were studied experimentally in the rat by the aid of either free horseradish peroxidase or horseradish peroxidase conjugated with wheat germ agglutinin used as retrograde tracers. The results suggest that the nucleus reticularis pontis oralis receives its main input from the zona incerta and field H1 of Forel, the superior colliculus, the central gray substance, and the mesencephalic and magnocellular pontomedullary districts of the reticular formation. Many other structures seem to represent modest additional sources of projections to the nucleus reticularis pontis oralis; these structures include numerous cortical territories, the nucleus basalis, the central amygdaloid nucleus, hypothalamic districts, the anterior pretectal nucleus, the substantia nigra, the cuneiform, the accessory oculomotor and the deep cerebellar nuclei, trigeminal, parabrachial and vestibular sensory cell groups, the nuclei raphe dorsalis and magnus, the locus coeruleus, the dorsolateral tegmental nucleus, and the spinal cord. While the afferentation of the rostral portion of the nucleus reticularis pontis caudalis appears to conform to the general pattern outlined above, some deviations from that pattern emerge when the innervation of the caudal district of the nucleus reticularis pontis caudalis is considered; the most striking of these differences is the fact that both spinal and cerebellar inputs seem to distribute much more heavily to the referred caudal district than to the remaining magnocellular pontine reticular formation. The present results may contribute to the elucidation of the anatomical substrate of the functionally demonstrated involvement of the nuclei reticularis pontis oralis and caudalis in several domains that include the regulation of the sleep-waking cycle and cortical arousal, somatic motor mechanisms and nociceptive behavior.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验