Maranzana Andrea, Ghigo Giovanni, Tonachini Glauco
Dipartimento di Chimica Generale e Organica Applicata, Università di Torino, Corso Massimo D'Azeglio 48, 10125 Torino, Italy.
Chemistry. 2003 Jun 6;9(11):2616-26. doi: 10.1002/chem.200204522.
This study aims to determine whether a balance between concerted and non-concerted pathways exists, and in particular to ascertain the possible role of diradical/zwitterion or peroxirane intermediates. Three non-concerted pathways, via 1) diradical or 2) peroxirane intermediates, and 3) by means of hydrogen-abstraction/radical recoupling, plus one concerted pathway (4), are explored. The intermediates and transition structures (TS) are optimized at the DFT(MPW1K), DFT(B3LYP) and CASSCF levels of theory. The latter optimizations are followed by multireference perturbative CASPT2 energy calculations. (1) The polar diradical forms from the separate reactants by surmounting a barrier (deltaE(++)(MPW1K)=12, deltaE++(B3LYP)=14, and deltaE(++)(CASPT2)=16 kcal mol(-1) and can back-dissociate through the same TS, with barriers of 11 (MPW1K) and 8 kcal mol(-1) (B3LYP and CASPT2). The diradical to hydroperoxide transformation is easy at all levels (deltaE(++)(MPW1K)<4, deltaE(++)(B3LYP)=1 and deltaE(++)(CASPT2)=1 kcal mol(-1)). (2) Peroxirane is attainable only by passing through the diradical intermediate, and not directly, due to the nature of the critical points involved. It is located higher in energy than the diradical by 12 kcal mol(-1), at all theory levels. The energy barrier for the diradical to cis-peroxirane transformation (deltaE(++)=14-16 kcal mol(-1)) is much higher than that for the diradical transformation to the hydroperoxide. In addition, peroxirane can very easily back-transform to the diradical (deltaE(++)<3 kcal mol(-1)). Not only the energetics, but also the qualitative features of the energy hypersurface, prevent a pathway connecting the peroxirane to the hydroperoxide at all levels of theory. (3) The last two-step pathway (hydrogen-abstraction by (1)O(2), followed by HOO-allyl radical coupling) is not competitive with the diradical mechanism. (4) A concerted pathway is carefully investigated, and deemed an artifact of restricted DFT calculations. Finally, the possible ene/[pi2+pi2] competition is discussed.
本研究旨在确定协同和非协同途径之间是否存在平衡,特别是要确定双自由基/两性离子或过氧环丙烷中间体可能发挥的作用。研究探索了三条非协同途径,即通过1)双自由基或2)过氧环丙烷中间体,以及3)通过氢提取/自由基再耦合,再加上一条协同途径(4)。中间体和过渡结构(TS)在DFT(MPW1K)、DFT(B3LYP)和CASSCF理论水平上进行了优化。在这些优化之后进行了多参考微扰CASPT2能量计算。(1)极性双自由基由单独的反应物通过克服一个势垒形成(δE(++) (MPW1K)=12,δE++(B3LYP)=14,δE(++) (CASPT2)=16 kcal mol(-1)),并且可以通过相同的过渡态反向解离,势垒分别为11(MPW1K)和8 kcal mol(-1)(B3LYP和CASPT2)。在所有水平上,双自由基向氢过氧化物的转化都很容易(δE(++) (MPW1K)<4,δE(++) (B3LYP)=1,δE(++) (CASPT2)=1 kcal mol(-1))。(2)由于所涉及的临界点的性质,过氧环丙烷只能通过双自由基中间体获得,而不能直接获得。在所有理论水平上,它的能量比双自由基高12 kcal mol(-1)。双自由基向顺式过氧环丙烷转化的能量势垒(δE(++)=14 - 16 kcal mol(-1))比双自由基向氢过氧化物转化的势垒高得多。此外,过氧环丙烷可以非常容易地反向转化为双自由基(δE(++)<3 kcal mol(-1))。不仅是能量,而且能量超曲面的定性特征,在所有理论水平上都阻止了一条将过氧环丙烷与氢过氧化物连接起来的途径。(3)最后两步途径((1)O(2)进行氢提取,然后是HOO - 烯丙基自由基耦合)与双自由基机制相比没有竞争力。(4)对一条协同途径进行了仔细研究,并认为这是受限DFT计算的一个假象。最后,讨论了可能的烯/[π2+π2]竞争。