Morais Latino Loureiro, Bennis Khalil, Ripoche Isabelle, Liao Liang, Auzanneau France-Isabelle, Gelas Jacques
Laboratoire de Chimie des Hétérocycles et des Glucides, Ecole Nationale Supérieure de Chimie de Clermont-Ferrand, BP 187, F-63174, Aubière, France.
Carbohydr Res. 2003 Jun 23;338(13):1369-79. doi: 10.1016/s0008-6215(03)00149-6.
We are investigating the synthesis of thioanalogues of nodulation factors that will be resistant to degradation by chitinases. To study the influence of our protecting group strategy, the glycosylation of 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside (7) with two trichloroacetimidate glycosyl donors carrying an azido group at C-2 and either benzyl or benzoyl protecting groups on O-3 and O-4 was first attempted under catalysis with BF(3).Et(2)O in toluene. While glycosylation with the benzoylated glycosyl donor gave only a poor yield (27%) of the disaccharide, a similar reaction with the benzylated donor gave the corresponding disaccharide in good yield (77%). Although both products were obtained as anomeric mixtures, the benzylated donor led to improved stereoselectivity in favor of the desired beta-anomer (alpha:beta 3:7). Based on these results, a novel thiotrisaccharide was synthesized via the coupling of 7 with 6-O-acetyl-4-S-(3,4,6-tri-O-acetyl-2-benzyloxycarbonylamino-2-deoxy-beta-D-glucopyranosyl)-2-azido-3-O-benzyl-2-deoxy-4-thio-alpha-D-glucopyranosyl trichloroacetimidate (25) also newly synthesized. After optimization of the reaction conditions, the desired thiotrisaccharide 4-O-[6-O-acetyl-4-S-(3,4,6-tri-O-acetyl-2-benzyloxycarbonylamino-2-deoxy-beta-D-glucopyranosyl)-2-azido-3-O-benzyl-2-deoxy-4-thio-beta-D-glucopyranosyl]-1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside (26beta) was obtained in 57% yield. These conditions led to an anomeric mixture in favor of the desired beta-anomer (alpha:beta 1:4.7) that was separated from the alpha-anomer by normal-phase HPLC on a PrepNova Pack(R) silica gel cartridge. The work described here shows that thiodisaccharide glycosyl donors behave quite differently from the analogous O-disaccharide used previously to synthesize nodulation factors.
我们正在研究对结瘤因子硫代类似物的合成,该类似物将能抵抗几丁质酶的降解。为了研究我们的保护基策略的影响,首先尝试在甲苯中用BF(3).Et(2)O催化,使1,6-脱水-2-叠氮基-3-O-苄基-2-脱氧-β-D-吡喃葡萄糖苷(7)与两种在C-2位带有叠氮基且在O-3和O-4位分别带有苄基或苯甲酰基保护基的三氯乙酰亚胺糖基供体进行糖基化反应。虽然用苯甲酰化糖基供体进行糖基化反应时,二糖的产率很低(27%),但与苄基化供体进行类似反应时,相应二糖的产率较高(77%)。尽管两种产物均以异头物混合物形式获得,但苄基化供体导致立体选择性提高,有利于生成所需的β-异头物(α:β为3:7)。基于这些结果,通过将7与同样新合成的6-O-乙酰基-4-S-(3,4,6-三-O-乙酰基-2-苄氧基羰基氨基-2-脱氧-β-D-吡喃葡萄糖基)-2-叠氮基-3-O-苄基-2-脱氧-4-硫代-α-D-吡喃葡萄糖基三氯乙酰亚胺(25)偶联,合成了一种新型硫代三糖。在优化反应条件后,以57%的产率得到了所需的硫代三糖4-O-[6-O-乙酰基-4-S-(3,4,6-三-O-乙酰基-2-苄氧基羰基氨基-2-脱氧-β-D-吡喃葡萄糖基)-2-叠氮基-3-O-苄基-2-脱氧-4-硫代-β-D-吡喃葡萄糖基]-1,6-脱水-2-叠氮基-3-O-苄基-2-脱氧-β-D-吡喃葡萄糖苷(26β)。这些条件导致生成有利于所需β-异头物的异头物混合物(α:β为1:4.7),通过在PrepNova Pack(R)硅胶柱上进行正相高效液相色谱法将其与α-异头物分离。此处所述工作表明,硫代二糖糖基供体的行为与先前用于合成结瘤因子的类似O-二糖有很大不同。