Umezawa Kazuo, Kawakami Mariko, Watanabe Takumi
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-0061, Japan.
Pharmacol Ther. 2003 Jul;99(1):15-24. doi: 10.1016/s0163-7258(03)00050-0.
Protein-tyrosine kinase (PTKase) and protein-tyrosine phosphatase (PTPase) regulate the intracellular signal transduction in various biological processes. PTPase often negatively regulates the intracellular protein-tyrosine phosphorylation. PTPases are considered to be involved in the etiology of diabetes mellitus and neural diseases, such as Alzheimer's disease and Parkinson's disease. Therefore, PTPase inhibitors should be useful tools to study the role of PTPases in these diseases and other biological phenomena, and they hopefully may be developed into chemotherapeutic agents. We first discovered a naturally occurring PTPase inhibitor, dephostatin, in 1993. Later, we developed stable and safe dephostatin analogues by a molecular design approach employing the concept of CH/pi interaction. We prepared Et-3,4-dephostatin as a stable analogue and found it to inhibit PTP-1B and SHPTP-1 PTPases selectively. Et-3,4-dephostatin increased the tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1), with or without insulin, in differentiated 3T3-L1 mouse adipocytes. It also increased the phosphorylation and activation of Akt. The analogue also enhanced translocation of glucose transporter 4 (GLUT4) from the cytoplasm to the membrane and 2-deoxyglucose transport. It also showed an in vivo antidiabetic effect in terms of reducing the high blood glucose level in KK-Ay mice after oral administration. Since Et-3,4-dephostatin contains a nitrosamine moiety, we designed nitrosamine-free dephostatin analogues employing the concept of CH/pi interaction. Then, we synthesized methoxime- and hexyl-methoxime-3,4-dephostatin as nitrosamine-free analogues. These analogues also showed antidiabetic activity in vivo and illustrate the utility of the CH/pi interaction molecular design approach.
蛋白酪氨酸激酶(PTKase)和蛋白酪氨酸磷酸酶(PTPase)在各种生物过程中调节细胞内信号转导。PTPase通常对细胞内蛋白酪氨酸磷酸化起负调节作用。PTPase被认为与糖尿病和神经疾病如阿尔茨海默病和帕金森病的病因有关。因此,PTPase抑制剂应是研究PTPase在这些疾病及其他生物现象中作用的有用工具,并且有望被开发成化疗药物。我们于1993年首次发现一种天然存在的PTPase抑制剂——去磷酸他汀。后来,我们通过采用CH/π相互作用概念的分子设计方法开发出稳定且安全的去磷酸他汀类似物。我们制备了Et - 3,4 - 去磷酸他汀作为稳定类似物,发现它能选择性抑制PTP - 1B和SHPTP - 1 PTPase。在分化的3T3 - L1小鼠脂肪细胞中,无论有无胰岛素,Et - 3,4 - 去磷酸他汀均可增加胰岛素受体和胰岛素受体底物 - 1(IRS - 1)的酪氨酸磷酸化。它还能增加Akt的磷酸化和激活。该类似物还增强了葡萄糖转运蛋白4(GLUT4)从细胞质到细胞膜的转位以及2 - 脱氧葡萄糖转运。口服给药后,它在降低KK - Ay小鼠高血糖水平方面也显示出体内抗糖尿病作用。由于Et - 3,4 - 去磷酸他汀含有亚硝胺部分,我们采用CH/π相互作用概念设计了无亚硝胺的去磷酸他汀类似物。然后,我们合成了甲氧肟基 - 和己基 - 甲氧肟基 - 3,4 - 去磷酸他汀作为无亚硝胺类似物。这些类似物在体内也显示出抗糖尿病活性,说明了CH/π相互作用分子设计方法的实用性。