Rice R L, Rusnak J M, Yokokawa F, Yokokawa S, Messner D J, Boynton A L, Wipf P, Lazo J S
Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Biochemistry. 1997 Dec 16;36(50):15965-74. doi: 10.1021/bi971338h.
Tyrosine phosphatases (PTPases) dephosphorylate phosphotyrosines while dual-specificity phosphatases (DSPases) dephosphorylate contiguous and semicontiguous phosphothreonine and phosphotyrosine on cyclin dependent kinases and mitogen-activated protein kinases. Consequently, PTPases and DSPases have a central role controlling signal transduction and cell cycle progression. Currently, there are few readily available potent inhibitors of PTPases or DSPases other than vanadate. Using a pharmacophore modeled on natural product inhibitors of phosphothreonine phosphatases, we generated a refined library of novel, phosphate-free, small-molecule compounds synthesized by a parallel, solid-phase combinatorial-based approach. Among the initial 18 members of this targeted diversity library, we identified several inhibitors of DSPases: Cdc25A, -B, and -C and the PTPase PTP1B. These compounds at 100 microM did not significantly inhibit the protein serine/threonine phosphatases PP1 and PP2A. Kinetic studies with two members of this library indicated competitive inhibition for Cdc25 DSPases and noncompetitive inhibition for PTP1B. Compound AC-alphaalpha69 had a Ki of approximately 10 microM for recombinant human Cdc25A, -B, and -C, and a Ki of 0.85 microM for the PTP1B. The marked differences in Cdc25 inhibition as compared to PTP1B inhibition seen with relatively modest chemical modifications in the modular side chains demonstrate the structurally demanding nature of the DSPase catalytic site distinct from the PTPase catalytic site. These results represent the first fundamental advance toward a readily modifiable pharmacophore for synthetic PTPase and DSPase inhibitors and illustrate the significant potential of a combinatorial-based strategy that supplements the rational design of a core structure by a randomized variation of peripheral substituents.
酪氨酸磷酸酶(PTPases)使磷酸酪氨酸去磷酸化,而双特异性磷酸酶(DSPases)则使细胞周期蛋白依赖性激酶和丝裂原活化蛋白激酶上相邻和半相邻的磷酸苏氨酸和磷酸酪氨酸去磷酸化。因此,PTPases和DSPases在控制信号转导和细胞周期进程中起着核心作用。目前,除了钒酸盐外,几乎没有现成的强效PTPases或DSPases抑制剂。我们以磷酸苏氨酸磷酸酶的天然产物抑制剂为模型构建了药效团,通过基于平行固相组合的方法生成了一个新型的、无磷酸盐的小分子化合物精制文库。在这个靶向多样性文库的最初18个成员中,我们鉴定出了几种DSPases的抑制剂:Cdc25A、-B和-C以及PTPase PTP1B。这些化合物在100微摩尔浓度下不会显著抑制蛋白丝氨酸/苏氨酸磷酸酶PP1和PP2A。对该文库中两个成员的动力学研究表明,它们对Cdc25 DSPases具有竞争性抑制作用,对PTP1B具有非竞争性抑制作用。化合物AC-αα69对重组人Cdc25A、-B和-C的抑制常数(Ki)约为10微摩尔,对PTP1B的Ki为0.85微摩尔。在模块化侧链中进行相对适度的化学修饰时,与PTP1B抑制相比,Cdc25抑制存在明显差异,这表明DSPase催化位点在结构上有严格要求,与PTPase催化位点不同。这些结果代表了朝着易于修饰的合成PTPase和DSPase抑制剂药效团迈出的首个重要进展,并说明了基于组合的策略的巨大潜力,该策略通过外围取代基的随机变化来补充核心结构的合理设计。