Suppr超能文献

高斯稳定选择的双基因座模型

The two-locus model of Gaussian stabilizing selection.

作者信息

Willensdorfer Martin, Bürger Reinhard

机构信息

Department of Mathematics, University of Vienna, Vienna, Austria.

出版信息

Theor Popul Biol. 2003 Aug;64(1):101-17. doi: 10.1016/s0040-5809(03)00049-2.

Abstract

We study the equilibrium structure of a well-known two-locus model in which two diallelic loci contribute additively to a quantitative trait that is under Gaussian stabilizing selection. The population is assumed to be infinitely large, randomly mating, and having discrete generations. The two loci may have arbitrary effects on the trait, the strength of selection and the recombination rate may also be arbitrary. We find that 16 different equilibrium patterns exist, having up to 11 equilibria; up to seven interior equilibria may coexist, and up to four interior equilibria, three in negative and one in positive linkage disequilibrium, may be simultaneously stable. Also, two monomorphic and two fully polymorphic equilibria may be simultaneously stable. Therefore, the result of evolution may be highly sensitive to perturbations in the initial conditions or in the underlying genetic parameters. For the special case of equal effects, global stability results are proved. In the general case, we rely in part on numerical computations. The results are compared with previous analyses of the special case of extremely strong selection, of an approximate model that assumes linkage equilibrium, and of the much simpler quadratic optimum model.

摘要

我们研究了一个著名的双基因座模型的平衡结构,其中两个双等位基因座对受高斯稳定选择的数量性状具有加性贡献。假设种群无限大、随机交配且具有离散世代。这两个基因座对性状可能有任意影响,选择强度和重组率也可能是任意的。我们发现存在16种不同的平衡模式,最多有11个平衡点;最多七个内部平衡点可能共存,并且最多四个内部平衡点,三个处于负连锁不平衡和一个处于正连锁不平衡,可能同时稳定。此外,两个纯合平衡点和两个完全多态平衡点可能同时稳定。因此,进化结果可能对初始条件或潜在遗传参数的扰动高度敏感。对于等效应的特殊情况,证明了全局稳定性结果。在一般情况下,我们部分依赖于数值计算。将结果与先前对极强选择的特殊情况、假设连锁平衡的近似模型以及简单得多的二次最优模型的分析进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验