Makrides Victoria, Shen Ting E, Bhatia Rajinder, Smith Bettye L, Thimm Julian, Lal Ratneshwar, Feinstein Stuart C
Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA.
J Biol Chem. 2003 Aug 29;278(35):33298-304. doi: 10.1074/jbc.M305207200. Epub 2003 Jun 12.
The accumulation of abnormal tau filaments is a pathological hallmark of many neurodegenerative diseases. In 1998, genetic analyses revealed a direct linkage between structural and regulatory mutations in the tau gene and the neurodegenerative disease, frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Importantly, the FTDP-17 phenotype is transmitted in a dominant rather than a recessive manner. However, the underlying molecular mechanisms causing disease remain uncertain. The most common molecular mechanism generating dominant phenotypes is the loss of function of a multimeric complex containing both mutant and wild-type subunits. Therefore, we sought to determine whether tau might normally function as a multimer. We co-incubated 35S-radiolabeled tau and biotinylated tau with taxol stabilized microtubules, at very low molar ratios of tau to tubulin. Subsequent covalent cross-linking followed by affinity-precipitation of the biotinylated tau revealed the formation of microtubule-dependent tau oligomers. We next used atomic force microscopy to independently assess this conclusion. Our results are consistent with the hypothesis that tau forms oligomers upon binding to microtubules. In addition to providing insights into normal tau action, our findings lead us to propose that one mechanism by which mutations in tau may cause cell death is through the formation of tau complexes containing mutant tau molecules in association with wild-type tau. These wild-type-mutant tau complexes may possess altered biological and/or biophysical properties that promote onset of the FTDP-17 phenotype, including neuronal cell death by either altering normal tau-mediated regulation of microtubule-dependent cellular functions and/or promoting the formation of pathological tau aggregates.
异常tau细丝的积累是许多神经退行性疾病的病理标志。1998年,基因分析揭示了tau基因的结构和调控突变与神经退行性疾病——与17号染色体相关的额颞叶痴呆伴帕金森综合征(FTDP - 17)之间的直接联系。重要的是,FTDP - 17的表型是以显性而非隐性方式遗传的。然而,导致该疾病的潜在分子机制仍不确定。产生显性表型最常见的分子机制是包含突变体和野生型亚基的多聚体复合物功能丧失。因此,我们试图确定tau是否通常以多聚体形式发挥作用。我们将35S放射性标记的tau和生物素化的tau与紫杉醇稳定的微管共同孵育,tau与微管蛋白的摩尔比非常低。随后进行共价交联,然后对生物素化的tau进行亲和沉淀,结果显示形成了微管依赖性tau寡聚体。接下来我们使用原子力显微镜独立评估这一结论。我们的结果与tau在与微管结合时形成寡聚体的假设一致。除了深入了解tau的正常作用外,我们的发现还使我们提出,tau突变可能导致细胞死亡的一种机制是通过形成含有突变tau分子与野生型tau结合的tau复合物。这些野生型 - 突变型tau复合物可能具有改变的生物学和/或生物物理特性,从而促进FTDP - 17表型的出现,包括通过改变正常tau介导的微管依赖性细胞功能调节和/或促进病理性tau聚集体的形成导致神经元细胞死亡。