Suppr超能文献

三种不同方法用于宫颈细胞自动分类的比较。

Comparison of three different methods for automated classification of cervical cells.

作者信息

Palcic B, MacAulay C, Shlien S, Treurniet W, Tezcan H, Anderson G

机构信息

Cancer Imaging, Medical Physics, B.C. Cancer Agency, Vancouver, Canada.

出版信息

Anal Cell Pathol. 1992 Nov;4(6):429-41.

PMID:1280993
Abstract

Over 4600 exfoliated squamous cervical cells taken from appropriate Papanicolaou samples were classified as normal, mildly dysplastic, moderately dysplastic and severely dysplastic by an experienced cytopathologist. The slides were de-stained and subsequently re-stained with Feulgen Thionin-SO2 stain. Images of the nuclei were then captured, recorded and processed employing an image cytometry device. Automated classification of the cells was carried out using three different methods--discriminant function analysis, a decision tree classifier and a neutral network classifier. The discriminant function analysis method, which combined all dysplastic cells into an abnormal group, achieved a combined error rate of less than 0.4% for moderate and severe dysplastic cells, and less than 40% for mildly dysplastic cells. All three methods yielded comparable results, which approached those of human performance.

摘要

一位经验丰富的细胞病理学家将取自适当巴氏涂片样本的4600多个脱落的宫颈鳞状细胞分为正常、轻度发育异常、中度发育异常和重度发育异常。玻片进行脱色处理,随后用福尔根硫堇-SO₂染色剂重新染色。然后使用图像细胞仪捕获、记录并处理细胞核图像。使用三种不同方法对细胞进行自动分类——判别函数分析、决策树分类器和神经网络分类器。判别函数分析方法将所有发育异常细胞合并为一个异常组,中度和重度发育异常细胞的综合错误率低于0.4%,轻度发育异常细胞的综合错误率低于40%。所有三种方法都得出了可比的结果,接近人类的表现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验