Suppr超能文献

脉冲白光与紫外线-C或温和热处理相结合以灭活灰葡萄孢菌和褐腐病菌分生孢子

Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena.

作者信息

Marquenie D, Geeraerd A H, Lammertyn J, Soontjens C, Van Impe J F, Michiels C W, Nicolaï B M

机构信息

Flanders Centre/Laboratory of Postharvest Technology, Katholieke Universiteit Leuven, W. de Croylaan 42, B-3001, Leuven, Belgium.

出版信息

Int J Food Microbiol. 2003 Aug 15;85(1-2):185-96. doi: 10.1016/s0168-1605(02)00538-x.

Abstract

The use of pulses of intense white light to inactivate conidia of the fungi Botrytis cinerea and Monilia fructigena, responsible for important economical losses during postharvest storage and transport of strawberries and sweet cherries, was investigated in this study. In the first stage, a light treatment applying pulses of 30 micros at a frequency of 15 Hz was investigated, resulting in a treatment duration varying from 1 to 250 s. The conidia of both fungi showed similar behaviour to pulsed light, with a maximal inactivation of 3 and 4 log units for B. cinerea and M. fructigena, respectively. The inactivation of the conidia increased with increasing treatment intensity, but no complete inactivation was achieved. The sigmoidal inactivation pattern obtained by the pulsed light treatment was described using a modification of the model of Geeraerd et al. [Int. J. Food Microbiol. 59 (2000) 185]. Hereto, the shoulder length was incorporated explicitly and relative values for the microbial populations were used. In the second stage, combinations of light pulses and ultraviolet-C or heat were applied. The UV light used in the experiments is the short-wave band or UV-C, running from 180 to 280 nm with a peak at 254 nm (UV-B runs from 280 to 320 nm and UV-A from 320 to 380 nm). The UV-C doses were 0.025, 0.05 and 0.10 J/cm(2), and the temperatures for the thermal treatment ranged from 35 to 45 degrees C during 3-15 min. When combining UV-C and light pulses, there was an increase in inactivation for both B. cinerea and M. fructigena, and synergism was observed. There was no effect of the order of the treatments. For the heat-light pulses combination, there was a difference between both fungi. The order of the treatments was highly significant for B. cinerea, but not for M. fructigena. Combining heat and light treatments improved the inactivation, and synergism between both methods was again observed. Complete inactivation of M. fructigena conidia was obtained after, e.g., a 40-s pulsed light treatment and 15 min at 41 degrees C, or after an 80-s light treatment and 10 min at 41 degrees C.

摘要

本研究探讨了利用强脉冲白光灭活灰葡萄孢菌和果生链核盘菌分生孢子的方法,这两种真菌会在草莓和甜樱桃的采后储存及运输过程中造成重大经济损失。在第一阶段,研究了采用频率为15Hz、脉冲宽度为30微秒的光照处理,处理持续时间从1秒到250秒不等。两种真菌的分生孢子对脉冲光表现出相似的反应,灰葡萄孢菌和果生链核盘菌的分生孢子最大灭活对数分别为3和4。分生孢子的灭活程度随处理强度的增加而提高,但未实现完全灭活。采用Geeraerd等人[《国际食品微生物学杂志》59 (2000) 185]模型的改进版本描述了脉冲光处理得到的S形灭活模式。在此,明确纳入了肩部长度,并使用了微生物群体的相对值。在第二阶段,采用了光脉冲与紫外线-C或热的组合处理。实验中使用的紫外线是短波波段或紫外线-C,波长范围为180至280nm,峰值在254nm(紫外线-B的波长范围为280至320nm,紫外线-A的波长范围为320至380nm)。紫外线-C剂量分别为0.025、0.05和0.10 J/cm²,热处理温度在35至45℃之间,持续3至15分钟。当紫外线-C与光脉冲联合使用时,灰葡萄孢菌和果生链核盘菌的灭活程度均有所提高,并观察到协同作用。处理顺序没有影响。对于热-光脉冲组合,两种真菌之间存在差异。处理顺序对灰葡萄孢菌非常显著,但对果生链核盘菌不显著。热与光处理相结合提高了灭活效果,再次观察到两种方法之间的协同作用。例如,经过40秒的脉冲光处理和41℃下15分钟,或80秒的光照处理和41℃下10分钟后,果生链核盘菌分生孢子实现了完全灭活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验