Fontaine Michael C, Lee Jeong Jin, Kehoe Michael A
School of Cell and Molecular Biosciences, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom.
Infect Immun. 2003 Jul;71(7):3857-65. doi: 10.1128/IAI.71.7.3857-3865.2003.
Streptolysin O (SLO) and streptolysin S (SLS) are potent cytolytic toxins produced by almost all clinical isolates of group A streptococci (GAS). Allele-replacement mutagenesis was used to construct nonpolar (in-frame) deletion mutations in the slo and sagB genes of the serotype M5 GAS strain Manfredo, producing isogenic single and double SLO- and SLS-defective mutants. In contrast to recent reports on SLS-defective insertion mutants (I. Biswas, P. Germon, K. McDade, and J. Scott, Infect. Immun. 69:7029-7038, 2001; Z. Li, D. Sledjeski, B. Kreikemeyer, A.Podbielski, and M. Boyle, J. Bacteriol. 181:6019-6027, 1999), none of the mutants described here had notable pleiotropic effects on the expression of other virulence factors examined. Comparison of isogenic parent and mutant strains in various virulence models revealed no differences in their abilities to multiply in human blood or in their 50% lethal doses (LD(50)s) upon intraperitoneal infection of BALB/c mice. A single log unit difference in the LD(50)s of the parent and SLS-defective mutant strains was observed upon infection by the subcutaneous (s.c.) route. Comparisons over a range of infective doses showed that both SLO and SLS contributed to the early stages of infection and to the induction of necrotic lesions in the murine s.c. model. Individually, each toxin made an incremental contribution to virulence that was not apparent at higher infective doses, although the absence of both toxins reduced virulence over the entire dose range examined. Interestingly, in some cases, the contribution of SLO to virulence was clear only from an analysis of the double-mutant strain, highlighting the value of not confining virulence studies to mutant strains defective in the expression of only single virulence factors.
链球菌溶血素O(SLO)和链球菌溶血素S(SLS)是几乎所有A组链球菌(GAS)临床分离株产生的强效细胞溶解毒素。采用等位基因置换诱变技术,在血清型M5 GAS菌株曼弗雷多的slo和sagB基因中构建非极性(框内)缺失突变,产生同基因的单SLO缺陷型和双SLO及SLS缺陷型突变体。与最近关于SLS缺陷插入突变体的报道(I. 比斯瓦斯、P. 热尔蒙、K. 麦克达德和J. 斯科特,《感染与免疫》69:7029 - 7038,2001;Z. 李、D. 斯莱杰斯基、B. 克雷克迈尔、A. 波德别尔斯基和M. 博伊尔,《细菌学杂志》181:6019 - 6027,1999)不同,这里描述的突变体对所检测的其他毒力因子的表达均无明显的多效性影响。在各种毒力模型中对同基因亲本菌株和突变体菌株进行比较,结果显示它们在人血液中增殖的能力以及对BALB/c小鼠进行腹腔感染时的50%致死剂量(LD50)并无差异。通过皮下(s.c.)途径感染时,亲本菌株和SLS缺陷型突变体菌株的LD50存在一个对数单位的差异。在一系列感染剂量范围内进行比较表明,SLO和SLS均对感染的早期阶段以及在小鼠皮下模型中坏死病变的诱导有作用。单独来看,每种毒素对毒力都有渐进性贡献,在较高感染剂量时这种贡献并不明显,不过两种毒素都缺失会在整个检测剂量范围内降低毒力。有趣的是,在某些情况下,只有通过对双突变体菌株进行分析才能清楚地看出SLO对毒力的贡献,这突出了不将毒力研究局限于仅单个毒力因子表达缺陷的突变体菌株的重要性。