Department of Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.
Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA.
mSystems. 2024 Sep 17;9(9):e0073624. doi: 10.1128/msystems.00736-24. Epub 2024 Aug 19.
is responsible for a range of diseases in humans contributing significantly to morbidity and mortality. Among more than 200 serotypes of , serotype M1 strains hold the greatest clinical relevance due to their high prevalence in severe human infections. To enhance our understanding of pathogenesis and discovery of potential therapeutic approaches, we have developed the first genome-scale metabolic model (GEM) for a serotype M1 strain, which we name iYH543. The curation of iYH543 involved cross-referencing a draft GEM of serotype M1 from the AGORA2 database with gene essentiality and autotrophy data obtained from transposon mutagenesis-based and growth screens. We achieved a 92.6% (503/543 genes) accuracy in predicting gene essentiality and a 95% (19/20 amino acids) accuracy in predicting amino acid auxotrophy. Additionally, Biolog Phenotype microarrays were employed to examine the growth phenotypes of which further contributed to the refinement of iYH543. Notably, iYH543 demonstrated 88% accuracy (168/190 carbon sources) in predicting growth on various sole carbon sources. Discrepancies observed between iYH543 and the actual behavior of living highlighted areas of uncertainty in the current understanding of metabolism. iYH543 offers novel insights and hypotheses that can guide future research efforts and ultimately inform novel therapeutic strategies.IMPORTANCEGenome-scale models (GEMs) play a crucial role in investigating bacterial metabolism, predicting the effects of inhibiting specific metabolic genes and pathways, and aiding in the identification of potential drug targets. Here, we have developed the first GEM for the highly virulent serotype, M1, which we name iYH543. The iYH543 achieved high accuracy in predicting gene essentiality. We also show that the knowledge obtained by substituting actual measurement values for iYH543 helps us gain insights that connect metabolism and virulence. iYH543 will serve as a useful tool for rational drug design targeting metabolism and computational screening to investigate the interplay between inhibiting virulence factor synthesis and growth.
是导致人类多种疾病的罪魁祸首,对发病率和死亡率有着重大影响。在超过 200 种血清型中,由于在严重人类感染中高度流行,血清型 M1 株系具有最大的临床相关性。为了增强我们对发病机制的理解并发现潜在的治疗方法,我们开发了第一个血清型 M1 株系的基因组规模代谢模型 (GEM),我们将其命名为 iYH543。iYH543 的编纂涉及将来自 AGORA2 数据库的 M1 血清型草案 GEM 与转座子诱变和生长筛选获得的基因必需性和自养性数据进行交叉引用。我们在预测基因必需性方面实现了 92.6%(503/543 个基因)的准确性,在预测氨基酸营养缺陷型方面实现了 95%(19/20 种氨基酸)的准确性。此外,还使用 Biolog Phenotype 微阵列检查了对各种单一碳源的生长表型的影响,这进一步有助于完善 iYH543。值得注意的是,iYH543 在预测各种单一碳源上的生长方面具有 88%的准确性(168/190 种碳源)。iYH543 与实际 行为之间的差异突出了当前对 代谢理解的不确定性领域。iYH543 提供了新的见解和假设,可以指导未来的研究工作,并最终为新的治疗策略提供信息。
基因组规模模型 (GEM) 在研究细菌代谢、预测抑制特定代谢基因和途径的效果以及辅助鉴定潜在药物靶点方面发挥着至关重要的作用。在这里,我们开发了第一个高度致命血清型 M1 的 GEM,我们将其命名为 iYH543。iYH543 在预测基因必需性方面具有很高的准确性。我们还表明,用实际测量值替代 iYH543 获得的知识有助于我们获得连接代谢和毒力的见解。iYH543 将成为针对 代谢的合理药物设计和计算筛选的有用工具,以研究抑制毒力因子合成和生长之间的相互作用。