Suppr超能文献

用于三氯乙烯降解的洋葱伯克霍尔德氏菌组成型菌株的筛选。

Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene.

作者信息

Shields M S, Reagin M J

机构信息

Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola 32514-5751.

出版信息

Appl Environ Microbiol. 1992 Dec;58(12):3977-83. doi: 10.1128/aem.58.12.3977-3983.1992.

Abstract

Tn5 insertion mutants of Pseudomonas cepacia G4 that were unable to degrade trichloroethylene (TCE), toluene, or phenol or to transform m-trifluoromethyl phenol (TFMP) to 7,7,7-trifluoro-2-hydroxy-6-oxo-2,4-heptadienoic acid (TFHA) were produced. Spontaneous reversion to growth on phenol or toluene as the sole source of carbon was observed in one mutant strain, G4 5223, at a frequency of approximately 1 x 10(-4) per generation. One such revertant, G4 5223-PR1, metabolized TFMP to TFHA and degraded TCE. Unlike wild-type G4, G4 5223-PR1 constitutively metabolized both TFMP and TCE without aromatic induction. G4 5223-PR1 also degraded cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and 1,1-dichloroethylene and oxidized naphthalene to alpha naphthol constitutively. G4 5223-PR1 exhibited a slight retardation in growth rate at TCE concentrations of > or = 530 microM, whereas G4 (which was unable to metabolize TCE under the same noninducing growth conditions) remained unaffected. The constitutive degradative phenotype of G4 5223-PR1 was completely stable through 100 generations of nonselective growth.

摘要

产生了洋葱伯克霍尔德菌G4的Tn5插入突变体,这些突变体无法降解三氯乙烯(TCE)、甲苯或苯酚,也无法将间三氟甲基苯酚(TFMP)转化为7,7,7-三氟-2-羟基-6-氧代-2,4-庚二烯酸(TFHA)。在一个突变菌株G4 5223中,观察到以苯酚或甲苯作为唯一碳源时自发回复生长的现象,回复频率约为每代1×10⁻⁴。一个这样的回复突变体G4 5223-PR1能将TFMP代谢为TFHA并降解TCE。与野生型G4不同,G4 5223-PR1在没有芳香族诱导的情况下组成型地代谢TFMP和TCE。G4 5223-PR1还能组成型地降解顺式-1,2-二氯乙烯、反式-1,2-二氯乙烯和1,1-二氯乙烯,并将萘氧化为α-萘酚。当TCE浓度≥530 microM时,G4 5223-PR1的生长速率略有延迟,而G4(在相同的非诱导生长条件下无法代谢TCE)则不受影响。G4 5223-PR1的组成型降解表型在100代非选择性生长过程中完全稳定。

相似文献

1
Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene.
Appl Environ Microbiol. 1992 Dec;58(12):3977-83. doi: 10.1128/aem.58.12.3977-3983.1992.
4
Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.
Can J Microbiol. 2014 Jul;60(7):487-90. doi: 10.1139/cjm-2014-0095. Epub 2014 Jun 16.
5
Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.
J Hazard Mater. 2014 Jun 30;275:99-106. doi: 10.1016/j.jhazmat.2014.04.052. Epub 2014 Apr 30.
6
TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4.
Appl Environ Microbiol. 1995 Apr;61(4):1352-6. doi: 10.1128/aem.61.4.1352-1356.1995.
7
Requirement of DNA repair mechanisms for survival of Burkholderia cepacia G4 upon degradation of trichloroethylene.
Appl Environ Microbiol. 2001 Dec;67(12):5384-91. doi: 10.1128/AEM.67.12.5384-5391.2001.
8
Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4.
Appl Environ Microbiol. 2001 May;67(5):2107-15. doi: 10.1128/AEM.67.5.2107-2115.2001.
9
Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate.
Appl Environ Microbiol. 1994 Sep;60(9):3368-74. doi: 10.1128/aem.60.9.3368-3374.1994.
10
Trichloroethylene degradation and mineralization by pseudomonads and Methylosinus trichosporium OB3b.
Appl Microbiol Biotechnol. 1996 Mar;45(1-2):248-56. doi: 10.1007/s002530050679.

引用本文的文献

1
Antifungal, plant growth-promoting, and mycotoxin detoxication activities of sp. strain XHY-12.
3 Biotech. 2020 Apr;10(4):158. doi: 10.1007/s13205-020-2112-y. Epub 2020 Mar 4.
2
A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation.
Appl Environ Microbiol. 2014 Sep;80(17):5467-76. doi: 10.1128/AEM.01620-14. Epub 2014 Jun 27.
3
Biodegradation of trichloroethylene by an endophyte of hybrid poplar.
Appl Environ Microbiol. 2012 May;78(9):3504-7. doi: 10.1128/AEM.06852-11. Epub 2012 Feb 24.
4
Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees.
Appl Environ Microbiol. 2009 Feb;75(3):748-57. doi: 10.1128/AEM.02239-08. Epub 2008 Dec 5.
5
Toluene 2-Monooxygenase-Dependent Growth of Burkholderia cepacia G4/PR1 on Diethyl Ether.
Appl Environ Microbiol. 1997 Apr;63(4):1606-9. doi: 10.1128/aem.63.4.1606-1609.1997.
6
Temporal Variation in Genetic Diversity and Structure of a Lotic Population of Burkholderia (Pseudomonas) cepacia.
Appl Environ Microbiol. 1996 May;62(5):1558-62. doi: 10.1128/aem.62.5.1558-1562.1996.
7
Tracking the Response of Burkholderia cepacia G4 5223-PR1 in Aquifer Microcosms.
Appl Environ Microbiol. 1995 Feb;61(2):448-55. doi: 10.1128/aem.61.2.448-455.1995.
8
Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene.
Appl Environ Microbiol. 2005 Dec;71(12):8500-5. doi: 10.1128/AEM.71.12.8500-8505.2005.
10
Quorum-sensing signals and quorum-sensing genes in Burkholderia vietnamiensis.
J Bacteriol. 2002 Feb;184(4):1187-91. doi: 10.1128/jb.184.4.1187-1191.2002.

本文引用的文献

2
Toxicity of Trichloroethylene to Pseudomonas putida F1 Is Mediated by Toluene Dioxygenase.
Appl Environ Microbiol. 1989 Oct;55(10):2723-5. doi: 10.1128/aem.55.10.2723-2725.1989.
3
Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium g4.
Appl Environ Microbiol. 1989 Jun;55(6):1624-9. doi: 10.1128/aem.55.6.1624-1629.1989.
4
Trichloroethylene biodegradation by a methane-oxidizing bacterium.
Appl Environ Microbiol. 1988 Apr;54(4):951-6. doi: 10.1128/aem.54.4.951-956.1988.
5
Aerobic metabolism of trichloroethylene by a bacterial isolate.
Appl Environ Microbiol. 1986 Aug;52(2):383-4. doi: 10.1128/aem.52.2.383-384.1986.
6
Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions.
Appl Environ Microbiol. 1983 Apr;45(4):1286-94. doi: 10.1128/aem.45.4.1286-1294.1983.
9
Biotransformation of trichloroethylene in soil.
Appl Environ Microbiol. 1985 Jan;49(1):242-3. doi: 10.1128/aem.49.1.242-243.1985.
10
Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway.
Appl Environ Microbiol. 1987 May;53(5):949-54. doi: 10.1128/aem.53.5.949-954.1987.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验