Suppr超能文献

在产甲烷条件下四氯乙烯向三氯乙烯、二氯乙烯、氯乙烯和二氧化碳的生物转化。

Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions.

作者信息

Vogel T M, McCarty P L

出版信息

Appl Environ Microbiol. 1985 May;49(5):1080-3. doi: 10.1128/aem.49.5.1080-1083.1985.

Abstract

Tetrachloroethylene (PCE) and trichloroethylene (TCE), common industrial solvents, are among the most frequent contaminants found in groundwater supplies. Due to the potential toxicity and carcinogenicity of chlorinated ethylenes, knowledge about their transformation potential is important in evaluating their environmental fate. The results of this study confirm that PCE can be transformed by reductive dehalogenation to TCE, dichloroethylene, and vinyl chloride (VC) under anaerobic conditions. In addition, [14C]PCE was at least partially mineralized to CO2. Mineralization of 24% of the PCE occurred in a continuous-flow fixed-film methanogenic column with a liquid detention time of 4 days. TCE was the major intermediate formed, but traces of dichloroethylene isomers and VC were also found. In other column studies under a different set of methanogenic conditions, nearly quantitative conversion of PCE to VC was found. These studies clearly demonstrate that TCE and VC are major intermediates in PCE biotransformation under anaerobic conditions and suggest that potential exists for the complete mineralization of PCE to CO2 in soil and aquifer systems and in biological treatment processes.

摘要

四氯乙烯(PCE)和三氯乙烯(TCE)是常见的工业溶剂,也是地下水源中最常发现的污染物。由于氯化乙烯具有潜在毒性和致癌性,了解它们的转化潜力对于评估其环境归宿至关重要。本研究结果证实,在厌氧条件下,PCE可通过还原脱卤作用转化为TCE、二氯乙烯和氯乙烯(VC)。此外,[14C]PCE至少部分矿化生成了CO2。在液体停留时间为4天的连续流固定膜产甲烷柱中,24%的PCE发生了矿化。TCE是形成的主要中间产物,但也发现了痕量的二氯乙烯异构体和VC。在另一组不同产甲烷条件下的柱研究中,发现PCE几乎定量转化为VC。这些研究清楚地表明,TCE和VC是厌氧条件下PCE生物转化的主要中间产物,并表明在土壤和含水层系统以及生物处理过程中,PCE完全矿化生成CO2具有潜力。

相似文献

3
Isolation and characterization of tetrachloroethylene- and cis-1,2-dichloroethylene-dechlorinating propionibacteria.
J Ind Microbiol Biotechnol. 2011 Oct;38(10):1667-77. doi: 10.1007/s10295-011-0956-1. Epub 2011 Mar 25.
4
Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions.
Appl Environ Microbiol. 1989 Sep;55(9):2144-51. doi: 10.1128/aem.55.9.2144-2151.1989.
5
Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms.
Environ Sci Technol. 2004 Sep 15;38(18):4768-74. doi: 10.1021/es049965z.
6
Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture.
Appl Environ Microbiol. 1986 Apr;51(4):720-4. doi: 10.1128/aem.51.4.720-724.1986.
7
Reductive dechlorination of chlorinated ethene DNAPLs by a culture enriched from contaminated groundwater.
Biotechnol Bioeng. 1999 Jan 20;62(2):160-5. doi: 10.1002/(sici)1097-0290(19990120)62:2<160::aid-bit5>3.0.co;2-4.
9
Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by "Dehalococcoides ethenogenes" 195.
Appl Environ Microbiol. 1999 Jul;65(7):3108-13. doi: 10.1128/AEM.65.7.3108-3113.1999.

引用本文的文献

1
Recent advances and trends of trichloroethylene biodegradation: A critical review.
Front Microbiol. 2022 Dec 22;13:1053169. doi: 10.3389/fmicb.2022.1053169. eCollection 2022.
2
Nothing lasts forever: understanding microbial biodegradation of polyfluorinated compounds and perfluorinated alkyl substances.
Microb Biotechnol. 2022 Mar;15(3):773-792. doi: 10.1111/1751-7915.13928. Epub 2021 Sep 27.
3
Function of Biohydrogen Metabolism and Related Microbial Communities in Environmental Bioremediation.
Front Microbiol. 2019 Feb 14;10:106. doi: 10.3389/fmicb.2019.00106. eCollection 2019.
6
Microbial degradation of chloroethenes: a review.
Environ Sci Pollut Res Int. 2017 May;24(15):13262-13283. doi: 10.1007/s11356-017-8867-y. Epub 2017 Apr 5.
7
Abiotic reductive dechlorination of cis-DCE by ferrous monosulfide mackinawite.
Environ Sci Pollut Res Int. 2015 Nov;22(21):16463-74. doi: 10.1007/s11356-015-5033-2. Epub 2015 Aug 18.
8
Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins.
DNA Repair (Amst). 2015 Jun;30:1-10. doi: 10.1016/j.dnarep.2015.02.021. Epub 2015 Mar 5.
9
Does groundwater protection in Europe require new EU-wide environmental quality standards?
Front Chem. 2014 Jun 2;2:32. doi: 10.3389/fchem.2014.00032. eCollection 2014.
10
Haloacetic acids, phytotoxic secondary air pollutants.
Environ Sci Pollut Res Int. 1994 Jan;1(1):4-14. doi: 10.1007/BF02986917.

本文引用的文献

1
Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions.
Appl Environ Microbiol. 1983 Apr;45(4):1286-94. doi: 10.1128/aem.45.4.1286-1294.1983.
3
Bacterial growth on 1,2-dichloroethane.
Experientia. 1983 Nov 15;39(11):1271-3. doi: 10.1007/BF01990365.
4
The anaerobic filter for waste treatment.
J Water Pollut Control Fed. 1969 May;41:Suppl:R160+.
5
Analysis of trace pollutants in the air by means of cryogenic gas chromatography.
J Chromatogr. 1976 Jun 23;121(2):285-94. doi: 10.1016/s0021-9673(00)85025-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验