Suppr超能文献

1,25-dihydroxyvitamin D3-induced apoptosis of retinoblastoma cells is associated with reciprocal changes of Bcl-2 and bax.

作者信息

Wagner Nicole, Wagner Kay-Dietrich, Schley Gunnar, Badiali Lucia, Theres Heinz, Scholz Holger

机构信息

Klinik für Innere Medizin I, Medizinische Fakultät Charité, Humboldt-Universität, Tucholskystrasse 2, 10117 Berlin, Germany.

出版信息

Exp Eye Res. 2003 Jul;77(1):1-9. doi: 10.1016/s0014-4835(03)00108-8.

Abstract

The active vitamin D metabolite 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) and related substances have previously been tested in tissue culture and animal models of retinoblastoma for their use as anti-tumor drugs. However, despite of the potential therapeutic value, the molecular mechanisms through which 1,25-(OH)(2)D(3) inhibits the growth of retinoblastoma cells are incompletely understood. To elucidate possible signalling pathways for the anti-proliferative action of vitamin D compounds in retinal tumor cells, we analyzed the effect of 1,25-(OH)(2)D(3) and its synthetic analogue KH1060 on the growth of human retinoblastoma-derived Y79 cells. Vitamin D receptor (VDR) mRNA was detected by reverse transcription PCR in Y79 cells and in tissue specimens of human retinoblastoma. VDR transcripts were confirmed at the protein level by strong immunostaining of solid retinal tumors for VDR. Incubation with 1,25-(OH)(2)D(3) and KH1060 (10(-10)-10(-6)moll(-1)) decreased the number of Y79 cells in a timely and dose-dependent manner. Treatment with 1,25-(OH)(2)D(3) (10(-10)moll(-1)) for 24 hr caused cell cycle arrest in the G0/1 phase. Apoptosis of Y79 cells in response to 1,25-(OH)(2)D(3) was demonstrated by the means of TdT-dUTP terminal nick-end labelling (TUNEL), annexin V staining, and detection of DNA fragmentation on agarose gels. 1,25-(OH)(2)D(3)-induced programmed death of Y79 cells was accompanied by a concentration-dependent increase in Bax protein and a reduction in Bcl-2 content. These findings suggest that 1,25-(OH)(2)D(3) inhibits the growth of retinoblastoma cells by causing cell cycle arrest and apoptosis. 1,25-(OH)(2)D(3)-induced programmed death of retinoblastoma cells appears to involve reciprocal changes in Bcl-2 and Bax proteins.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验