Meijer Johanna H, Schwartz William J
Department of Physiology, Leiden University Medical Centre, 2300 RC Leiden, the Netherlands.
J Biol Rhythms. 2003 Jun;18(3):235-49. doi: 10.1177/0748730403018003006.
Within the suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is a circadian pacemaker that functions as a clock. Its endogenous period is adjusted to the external 24-h light-dark cycle, primarily by light-induced phase shifts that reset the pacemaker's oscillation. Evidence using a wide variety of neurobiological and molecular genetic tools has elucidated key elements that comprise the visual input pathway for SCN photoentrainment in rodents. Important questions remain regarding the intracellular signals that reset the autoregulatory molecular loop within photoresponsive cells in the SCN's retino-recipient subdivision, as well as the intercellular coupling mechanisms that enable SCN tissue to generate phase shifts of overt behavioral and physiological circadian rhythms such as locomotion and SCN neuronal firing rate. Multiple neurotransmitters, protein kinases, and photoinducible genes add to system complexity, and we still do not fully understand how dawn and dusk light pulses ultimately produce bidirectional, advancing and delaying phase shifts for pacemaker entrainment.
在哺乳动物下丘脑的视交叉上核(SCN)内有一个作为时钟的昼夜节律起搏器。其内在周期主要通过重置起搏器振荡的光诱导相移,被调整到外部24小时的明暗周期。使用各种神经生物学和分子遗传学工具的证据已经阐明了构成啮齿动物SCN光同步化视觉输入途径的关键要素。关于重置SCN视网膜接受区光反应性细胞内自动调节分子环的细胞内信号,以及使SCN组织产生明显行为和生理昼夜节律(如运动和SCN神经元放电率)相移的细胞间耦合机制,仍然存在重要问题。多种神经递质、蛋白激酶和光诱导基因增加了系统的复杂性,而且我们仍然不完全理解黎明和黄昏光脉冲最终如何产生双向的、提前和延迟的相移以实现起搏器的同步化。