Suppr超能文献

哺乳动物生物钟中的信号传导:NO/cGMP途径。

Signaling in the mammalian circadian clock: the NO/cGMP pathway.

作者信息

Golombek Diego A, Agostino Patricia V, Plano Santiago A, Ferreyra Gabriela A

机构信息

Laboratory of Chronobiology, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 180, Bernal (1876), Buenos Aires, Argentina.

出版信息

Neurochem Int. 2004 Nov;45(6):929-36. doi: 10.1016/j.neuint.2004.03.023.

Abstract

Mammalian circadian rhythms are generated by a hypothalamic suprachiasmatic nuclei (SCN) clock. Light pulses synchronize body rhythms by inducing phase delays during the early night and phase advances during the late night. Phosphorylation events are known to be involved in circadian phase shifting, both for delays and advances. Pharmacological inhibition of the cGMP-dependent kinase (cGK) or Ca2+/calmodulin-dependent kinase (CaMK), or of neuronal nitric oxide synthase (nNOS) blocks the circadian responses to light in vivo. Light pulses administered during the subjective night, but not during the day, induce rapid phosphorylation of both p-CAMKII and p-nNOS (specifically phosphorylated by CaMKII). CaMKII inhibitors block light-induced nNOS activity and phosphorylation, suggesting a direct pathway between both enzymes. Furthermore, SCN cGMP exhibits diurnal and circadian rhythms with maximal values during the day or subjective day. This variation of cGMP levels appears to be related to temporal changes in phosphodiesterase (PDE) activity and not to guanylyl cyclase (GC) activity. Light pulses increase SCN cGMP levels at circadian time (CT) 18 (when light causes phase advances of rhythms) but not at CT 14 (the time for light-induced phase delays). cGK II is expressed in the hamster SCN and also exhibits circadian changes in its levels, peaking during the day. Light pulses increase cGK activity at CT 18 but not at CT 14. In addition, cGK and GC inhibition by KT-5823 and ODQ significantly attenuated light-induced phase shifts at CT 18. This inhibition did not change c-Fos expression SCN but affected the expression of the clock gene per in the SCN. These results suggest a signal transduction pathway responsible for light-induced phase advances of the circadian clock which could be summarized as follows: Glu-Ca2+-CaMKII-nNOS-GC-cGMP-cGK-->-->clock genes. This pathway offers a signaling window that allows peering into the circadian clock machinery in order to decipher its temporal cogs and wheels.

摘要

哺乳动物的昼夜节律由下丘脑视交叉上核(SCN)生物钟产生。光脉冲通过在夜晚早期诱导相位延迟和在夜晚后期诱导相位提前来同步身体节律。已知磷酸化事件参与昼夜节律的相位移动,包括延迟和提前。对环磷酸鸟苷依赖性激酶(cGK)、钙/钙调蛋白依赖性激酶(CaMK)或神经元型一氧化氮合酶(nNOS)进行药理抑制可阻断体内对光的昼夜节律反应。在主观夜间而非白天给予光脉冲会诱导p-CAMKII和p-nNOS(由CaMKII特异性磷酸化)的快速磷酸化。CaMKII抑制剂可阻断光诱导的nNOS活性和磷酸化,提示这两种酶之间存在直接途径。此外,SCN中的环磷酸鸟苷(cGMP)呈现昼夜节律,在白天或主观白天达到最大值。cGMP水平的这种变化似乎与磷酸二酯酶(PDE)活性的时间变化有关,而与鸟苷酸环化酶(GC)活性无关。光脉冲在昼夜时间(CT)18时增加SCN中的cGMP水平(此时光导致节律的相位提前),但在CT 14时不增加(此时为光诱导的相位延迟时间)。cGK II在仓鼠SCN中表达,其水平也呈现昼夜变化,在白天达到峰值。光脉冲在CT 18时增加cGK活性,但在CT 14时不增加。此外,KT-5823和ODQ对cGK和GC的抑制显著减弱了CT 18时的光诱导相位移动。这种抑制并未改变SCN中c-Fos的表达,但影响了SCN中生物钟基因per的表达。这些结果提示了一条负责光诱导生物钟相位提前的信号转导途径,可总结如下:谷氨酸-钙离子-CaMKII-nNOS-GC-cGMP-cGK→→生物钟基因。该途径提供了一个信号窗口,可借此深入了解生物钟机制,以解读其时间齿轮和轮轴。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验