Flach Carol R, Cai Peng, Dieudonné Darline, Brauner Joseph W, Keough Kevin M W, Stewart June, Mendelsohn Richard
Department of Chemistry, Newark College of Arts and Sciences, Rutgers University, Newark, New Jersey, USA.
Biophys J. 2003 Jul;85(1):340-9. doi: 10.1016/S0006-3495(03)74478-6.
Pulmonary surfactant, a lipid/protein complex that lines the air/water interface in the mammalian lung, functions to reduce the work of breathing. Surfactant protein B (SP-B) is a small, hydrophobic protein that is an essential component of this mixture. Structure-function relationships of SP-B are currently under investigation as the protein and its peptide analogs are being incorporated into surfactant replacement therapies. Knowledge of the structure of SP-B and its related peptides in bulk and monolayer phases will facilitate the design of later generation therapeutic agents. Prior infrared reflection-absorption spectroscopic studies reported notable, reversible surface pressure-induced antiparallel beta-sheet formation in a synthetic peptide derived from human SP-B, residues 9-36 (SP-B(9-36)). In the current work, infrared reflection-absorption spectroscopy is applied in conjunction with isotopic labeling to detect the site and pressure dependence of the conformational change. SP-B(9-36), synthesized with (13)C=O-labeled Ala residues in positions 26, 28, 30, and 32, shifted the beta-sheet marker band to approximately 1600 cm(-1) and thus immediately identified this structural element within the labeled region. Surface pressure-induced alterations in the relative intensities of Amide I band constituents are interpreted using a semiempirical transition dipole coupling model. In addition, electron micrographs reveal the formation of tubular myelin structures from in vitro preparations using SP-B(9-36) in place of porcine SP-B indicating that the peptide has the potential to mimic this property of the native protein.
肺表面活性剂是一种脂质/蛋白质复合物,位于哺乳动物肺的气/水界面,其作用是减少呼吸功。表面活性剂蛋白B(SP-B)是一种小的疏水性蛋白质,是这种混合物的重要组成部分。由于该蛋白质及其肽类似物正被纳入表面活性剂替代疗法,目前正在研究SP-B的结构-功能关系。了解SP-B及其相关肽在本体相和单分子层相中的结构将有助于设计下一代治疗药物。先前的红外反射吸收光谱研究报告称,在源自人SP-B的残基9-36(SP-B(9-36))的合成肽中,表面压力诱导了显著的、可逆的反平行β-折叠形成。在当前工作中,将红外反射吸收光谱与同位素标记结合使用,以检测构象变化的位点和压力依赖性。在第26、28、30和32位用(13)C=O标记的丙氨酸残基合成的SP-B(9-36),将β-折叠标记带移至约1600 cm(-1),从而立即在标记区域内识别出该结构元件。使用半经验跃迁偶极耦合模型解释表面压力诱导的酰胺I带成分相对强度的变化。此外,电子显微镜照片显示,在体外制备中,用SP-B(9-36)代替猪SP-B形成了管状髓鞘结构,这表明该肽具有模拟天然蛋白质这一特性的潜力。