Suppr超能文献

骨缺损植入物刚度对界面力学条件的影响——基于接触的有限元分析

Influence of the stiffness of bone defect implants on the mechanical conditions at the interface--a finite element analysis with contact.

作者信息

Simon U, Augat P, Ignatius A, Claes L

机构信息

Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany.

出版信息

J Biomech. 2003 Aug;36(8):1079-86. doi: 10.1016/s0021-9290(03)00114-3.

Abstract

The study focused on the influence of the implant material stiffness on stress distribution and micromotion at the interface of bone defect implants. We hypothesized that a low-stiffness implant with a modulus closer to that of the surrounding trabecular bone would yield a more homogeneous stress distribution and less micromotion at the interface with the bony bed. To prove this hypothesis we generated a three-dimensional, non-linear, anisotropic finite element (FE) model. The FE model corresponded to a previously developed animal model in sheep. A prismatic implant filled a standardized defect in the load-bearing area of the trabecular bone beneath the tibial plateau. The interface was described by face-to-face contact elements, which allow press fits, friction, sliding, and gapping. We assumed a physiological load condition and calculated contact pressures, shear stresses, and shear movements at the interface for two implants of different stiffness (titanium: E=110GPa; composite: E=2.2GPa). The FE model showed that the stress distribution was more homogeneous for the low-stiffness implant. The maximum pressure for the composite implant (2.1 MPa) was lower than for the titanium implant (5.6 MPa). Contrary to our hypothesis, we found more micromotion for the composite (up to 6 microm) than for the titanium implant (up to 4.5 microm). However, for both implants peak stresses and micromotion were in a range that predicts adequate conditions for the osseointegration. This was confirmed by the histological results from the animal studies.

摘要

该研究聚焦于植入材料刚度对骨缺损植入物界面处应力分布和微动的影响。我们假设,模量更接近周围松质骨的低刚度植入物在与骨床的界面处会产生更均匀的应力分布和更小的微动。为了验证这一假设,我们建立了一个三维、非线性、各向异性的有限元(FE)模型。该FE模型对应于先前在绵羊身上建立的动物模型。一个棱柱形植入物填充了胫骨平台下方松质骨承重区域的标准化缺损。界面由面对面接触单元描述,该单元允许压配合、摩擦、滑动和间隙。我们假设了一种生理负荷条件,并计算了两种不同刚度植入物(钛:E = 110GPa;复合材料:E = 2.2GPa)在界面处的接触压力、剪应力和剪切运动。FE模型表明,低刚度植入物的应力分布更均匀。复合材料植入物的最大压力(2.1MPa)低于钛植入物(5.6MPa)。与我们的假设相反,我们发现复合材料的微动(高达6微米)比钛植入物(高达4.5微米)更多。然而,对于两种植入物,峰值应力和微动都处于预测骨整合充分条件的范围内。动物研究的组织学结果证实了这一点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验