文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

全踝关节置换术后对线不良会增加骨-假体界面的峰值接触应力:有限元分析。

Malalignment of the total ankle replacement increases peak contact stresses on the bone-implant interface: a finite element analysis.

机构信息

Department of Orthopedic Surgery, Laboratory for Experimental Orthopedics, Maastricht University Medical Center, Maastricht, the Netherlands.

Department of Biomedical Engineering, Orthopedic Biomechanics, Eindhoven University of Technology, Eindhoven, the Netherlands.

出版信息

BMC Musculoskelet Disord. 2022 May 17;23(1):463. doi: 10.1186/s12891-022-05428-0.


DOI:10.1186/s12891-022-05428-0
PMID:35581630
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9112518/
Abstract

INTRODUCTION: Malalignment of the Total Ankle Replacement (TAR) has often been postulated as the main reason for the high incidence of TAR failure. As the ankle joint has a small contact area, stresses are typically high, and malalignment may lead to non-homogeneous stress distributions, including stress peaks that may initiate failure. This study aims to elucidate the effect of TAR malalignment on the contact stresses on the bone-implant interface, thereby gaining more understanding of the potential role of malalignment in TAR failure. METHODS: Finite Element (FE) models of the neutrally aligned as well as malaligned CCI (Ceramic Coated Implant) Evolution TAR implant (Van Straten Medical) were developed. The CCI components were virtually inserted in a generic three-dimensional (3D) reconstruction of the tibia and talus. The tibial and talar TAR components were placed in neutral alignment and in 5° and 10° varus, valgus, anterior and posterior malalignment. Loading conditions of the terminal stance phase of the gait cycle were applied. Peak contact pressure and shear stress at the bone-implant interface were simulated and stress distributions on the bone-implant interface were visualized. RESULTS: In the neutral position, a peak contact pressure and shear stress of respectively 98.4 MPa and 31.9 MPa were found on the tibial bone-implant interface. For the talar bone-implant interface, this was respectively 68.2 MPa and 39.0 MPa. TAR malalignment increases peak contact pressure and shear stress on the bone-implant interface. The highest peak contact pressure of 177 MPa was found for the 10° valgus malaligned tibial component, and the highest shear stress of 98.5 MPa was found for the 10° posterior malaligned talar model. High contact stresses were mainly located at the edges of the bone-implant interface and the fixation pegs of the talar component. CONCLUSIONS: The current study demonstrates that TAR malalignment leads to increased peak stresses. High peak stresses could contribute to bone damage and subsequently reduced implant fixation, micromotion, and loosening. Further research is needed to investigate the relationship between increased contact stresses at the bone-implant interface and TAR failure.

摘要

引言:全踝关节置换术(TAR)的对线不良通常被认为是 TAR 失败发生率高的主要原因。由于踝关节的接触面积较小,因此通常会产生较高的应力,对线不良可能导致非均匀的应力分布,包括可能引发失效的应力峰值。本研究旨在阐明 TAR 对线不良对骨-假体界面接触应力的影响,从而更深入地了解对线不良在 TAR 失效中的潜在作用。

方法:开发了中性对线和 CCI(陶瓷涂层植入物)Evolution TAR 植入物(Van Straten Medical)对线不良的有限元(FE)模型。CCI 组件被虚拟插入胫骨和距骨的通用三维(3D)重建中。将胫骨和距骨 TAR 组件分别放置在中立对线位置以及 5°和 10°内翻、外翻、前向和后向对线不良位置。施加步态周期终末站立阶段的加载条件。模拟了骨-假体界面的最大接触压力和剪切应力,并可视化了骨-假体界面上的应力分布。

结果:在中立位置,胫骨骨-假体界面上的最大接触压力和剪切应力分别为 98.4 MPa 和 31.9 MPa。距骨骨-假体界面上的最大接触压力和剪切应力分别为 68.2 MPa 和 39.0 MPa。TAR 对线不良会增加骨-假体界面上的最大接触压力和剪切应力。胫骨对线不良 10°外翻的最大接触压力为 177 MPa,距骨对线不良 10°后倾的最大剪切应力为 98.5 MPa。高接触应力主要位于骨-假体界面的边缘和距骨组件的固定钉上。

结论:本研究表明,TAR 对线不良会导致峰值应力增加。高峰值应力可能导致骨损伤,随后导致植入物固定不良、微动和松动。需要进一步研究以探讨骨-假体界面接触应力增加与 TAR 失效之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/b49214b84f68/12891_2022_5428_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/0f9305a531f3/12891_2022_5428_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/0bd5cb360b04/12891_2022_5428_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/8b5b5a5b8c34/12891_2022_5428_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/b5ab317e2207/12891_2022_5428_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/6f8e387ff33b/12891_2022_5428_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/48a00e50c9ae/12891_2022_5428_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/6af4550633d7/12891_2022_5428_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/b49214b84f68/12891_2022_5428_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/0f9305a531f3/12891_2022_5428_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/0bd5cb360b04/12891_2022_5428_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/8b5b5a5b8c34/12891_2022_5428_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/b5ab317e2207/12891_2022_5428_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/6f8e387ff33b/12891_2022_5428_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/48a00e50c9ae/12891_2022_5428_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/6af4550633d7/12891_2022_5428_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/9112518/b49214b84f68/12891_2022_5428_Fig8_HTML.jpg

相似文献

[1]
Malalignment of the total ankle replacement increases peak contact stresses on the bone-implant interface: a finite element analysis.

BMC Musculoskelet Disord. 2022-5-17

[2]
Finite element stress analysis of the bearing component and bone resected surfaces for total ankle replacement with different implant material combinations.

BMC Musculoskelet Disord. 2022-1-19

[3]
[Finite element analysis of artificial ankle elastic improved inserts].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2023-11-15

[4]
Does Coronal Plane Malalignment of the Tibial Insert in Total Ankle Arthroplasty Alter Distal Foot Bone Mechanics? A Cadaveric Gait Study.

Clin Orthop Relat Res. 2020-7

[5]
Total ankle replacement design and positioning affect implant-bone micromotion and bone strains.

Med Eng Phys. 2017-4

[6]
A combined FE-hybrid MCDM framework for improving the performance of the conical stem tibial design for TAR with the addition of pegs.

Comput Methods Programs Biomed. 2023-7

[7]
Altered Range of Motion and Plantar Pressure in Anterior and Posterior Malaligned Total Ankle Arthroplasty: A Cadaveric Gait Study.

J Bone Joint Surg Am. 2019-9-18

[8]
Finite element analysis of bone-prosthesis interface micromotion for cementless talar component fixation through critical loading conditions.

Int J Numer Method Biomed Eng. 2020-3

[9]
The role of the depth of resection of the distal tibia on biomechanical performance of the tibial component for TAR: A finite element analysis with three implant designs.

Med Eng Phys. 2023-9

[10]
Polka dot cementless talar component in enhancing total ankle replacement fixation: A parametric study using the finite element analysis approach.

Comput Biol Med. 2022-2

引用本文的文献

[1]
Biomechanical stability and stress distribution before talus prosthesis design: effects of ligament removal and cartilage overlay thickness using finite element analysis.

Eur J Med Res. 2025-6-14

[2]
Biomechanical Analysis of Ankle Stability Following Deltoid Ligament Repair and Reconstruction.

Biomed Res Int. 2025-3-25

[3]
Are We Ready for Pseudotumors in Total Ankle Arthroplasty? A Case Report.

J Clin Med. 2025-1-20

[4]
Tibial Axis-to-Talus Distance: A Clinically Reliable Measurement for Sagittal Translation of the Talus in Total Ankle Arthroplasty.

Clin Orthop Surg. 2024-6

[5]
[Short-term effectiveness of INBONE total ankle prosthesis arthroplasty in the treatment of moderate to severe varus-type ankle arthritis].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2023-7-15

[6]
Patient-Reported Outcomes in Total Ankle Arthroplasty: Patient Specific Versus Standard Instrumentation.

Foot Ankle Spec. 2024-2

本文引用的文献

[1]
Finite-element analysis of the influence of tibial implant fixation design of total ankle replacement on bone-implant interfacial biomechanical performance.

J Orthop Surg (Hong Kong). 2020

[2]
Learning curve assessment for total ankle replacement using the transfibular approach.

Foot Ankle Surg. 2021-2

[3]
Bone remodelling around the tibia due to total ankle replacement: effects of implant material and implant-bone interfacial conditions.

Comput Methods Biomech Biomed Engin. 2019-12

[4]
Effects of implant orientation and implant material on tibia bone strain, implant-bone micromotion, contact pressure, and wear depth due to total ankle replacement.

Proc Inst Mech Eng H. 2019-3

[5]
Bone Mechanical Properties in Healthy and Diseased States.

Annu Rev Biomed Eng. 2018-6-4

[6]
Finite Element Study of Implant Subsidence and Medial Tilt in Agility Ankle Replacement.

Med Sci Monit. 2018-2-23

[7]
Accuracy assessment of measuring component position after total ankle arthroplasty using a conventional method.

J Orthop Surg Res. 2017-7-31

[8]
Identifying the learning curve for total ankle replacement using a mobile bearing prosthesis.

Foot Ankle Surg. 2017-6

[9]
Total ankle replacement design and positioning affect implant-bone micromotion and bone strains.

Med Eng Phys. 2017-4

[10]
Wrist arthroplasty: bone fixation, clinical development and mid to long term results.

Acta Orthop Suppl. 2014-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索