Suppr超能文献

二尖瓣腱索尺寸相关力学特性的结构基础。

A structural basis for the size-related mechanical properties of mitral valve chordae tendineae.

作者信息

Liao Jun, Vesely Ivan

机构信息

Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.

出版信息

J Biomech. 2003 Aug;36(8):1125-33. doi: 10.1016/s0021-9290(03)00109-x.

Abstract

It has been reported previously that the mechanical properties of mitral valve chordae tendineae vary with chordal size and type. The popularity of mitral valve repair and chordal transposition warrant a better understanding of this phenomenon. The objectives of this study were to characterize the size- and type-related variations in chordal mechanics and explain them from the ultra-structural viewpoint. A total of 52 porcine mitral valve chordae from eight hearts were mechanically tested. We found that thicker chordae were more extensible than thinner chordae (4.2+/-1.5%, 8.1+/-2.5%, 15.7+/-3.9% and 18.4+/-2.8% strain corresponding to chordae with cross-sectional areas of 0.1-0.5, 0.5-1.0, 1.0-2.0, and 2.0-3.0mm(2), respectively), and had lower moduli (90.1+/-22.3, 83.7+/-18.5, 66.3+/-13.5 and 61.7+/-13.3 MPa corresponding to the same chordae groups). Polarized light microscopy was used to measure collagen fibril crimp. Thicker chordae had smaller crimp period than thinner chordae (11.3+/-1.4 microm vs. 14.8+/-3.0 microm), and were thus more highly crimped. Thicker chordae could therefore extend to greater strain before lock-up. Transmission electron microscopy (TEM) was used to measure choral fibril ultra-structure. Thinner chordae had lower average fibril diameter than thicker chordae but greater average fibril density. The cross-sectional area occupied by fibrils, however, was found to be constant at 49+/-2% regardless of chordal size or type. The difference in moduli between thick and thin chordae can therefore be explained by differences in fibril packaging and hence fibril-to-fibril interactions. According to a simple fibril interaction model, chordae with smaller diameter fibrils will have a greater number of fibril-to-fibril interactions, and hence a greater modulus.

摘要

先前已有报道称,二尖瓣腱索的力学性能随腱索大小和类型而变化。二尖瓣修复和腱索转位的普及使得有必要更好地理解这一现象。本研究的目的是表征腱索力学中与大小和类型相关的变化,并从超微结构角度对其进行解释。对来自8颗心脏的总共52根猪二尖瓣腱索进行了力学测试。我们发现,较粗的腱索比较细的腱索更具延展性(对应横截面积为0.1 - 0.5、0.5 - 1.0、1.0 - 2.0和2.0 - 3.0mm² 的腱索,应变分别为4.2±1.5%、8.1±2.5%、15.7±3.9%和18.4±2.8%),且模量较低(对应相同腱索组的模量分别为90.1±22.3、83.7±18.5、66.3±13.5和61.7±13.3MPa)。使用偏振光显微镜测量胶原纤维的卷曲。较粗腱索的卷曲周期比较细腱索小(11.3±1.4μm对14.8±3.0μm),因此卷曲程度更高。因此,较粗腱索在锁定前可延伸至更大应变。使用透射电子显微镜(TEM)测量腱索纤维的超微结构。较细腱索的平均纤维直径比较粗腱索低,但平均纤维密度更高。然而,发现无论腱索大小或类型如何,纤维所占的横截面积恒定为49±2%。因此,可以用纤维包装的差异以及由此产生的纤维间相互作用来解释粗、细腱索之间模量的差异。根据一个简单的纤维相互作用模型,具有较小直径纤维的腱索将具有更多的纤维间相互作用,并因此具有更大的模量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验