Coggins Brian E, Li Xuechen, McClerren Amanda L, Hindsgaul Ole, Raetz Christian R H, Zhou Pei
Department of Biochemistry, Duke University Medical Center, Box 3711 DUMC, 242 Nanaline Duke Building, Research Drive, Durham, North Carolina 27710, USA.
Nat Struct Biol. 2003 Aug;10(8):645-51. doi: 10.1038/nsb948.
The zinc-dependent UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) catalyzes the first committed step in the biosynthesis of lipid A, the hydrophobic anchor of lipopolysaccharide (LPS) that constitutes the outermost monolayer of Gram-negative bacteria. As LpxC is crucial for the survival of Gram-negative organisms and has no sequence homology to known mammalian deacetylases or amidases, it is an excellent target for the design of new antibiotics. The solution structure of LpxC from Aquifex aeolicus in complex with a substrate-analog inhibitor, TU-514, reveals a novel alpha/beta fold, a unique zinc-binding motif and a hydrophobic passage that captures the acyl chain of the inhibitor. On the basis of biochemical and structural studies, we propose a catalytic mechanism for LpxC, suggest a model for substrate binding and provide evidence that mobility and dynamics in structural motifs close to the active site have key roles in the capture of the substrate.
锌依赖性UDP-3-O-酰基-N-乙酰葡糖胺脱乙酰酶(LpxC)催化脂多糖(LPS)生物合成中的首个关键步骤,脂多糖是构成革兰氏阴性菌最外层单分子层的疏水锚定物。由于LpxC对革兰氏阴性菌的存活至关重要,且与已知的哺乳动物脱乙酰酶或酰胺酶没有序列同源性,因此它是设计新型抗生素的理想靶点。嗜热栖热菌LpxC与底物类似物抑制剂TU-514复合物的溶液结构揭示了一种新型的α/β折叠、独特的锌结合基序以及捕获抑制剂酰基链的疏水通道。基于生化和结构研究,我们提出了LpxC的催化机制,给出了底物结合模型,并提供证据表明靠近活性位点的结构基序中的流动性和动力学在底物捕获中起关键作用。