Suppr超能文献

基于光谱荧光特征的模型用于表征处理后水样中溶解性有机物的比较。

Comparison of spectral fluorescent signatures-based models to characterize DOM in treated water samples.

作者信息

Bengraïne Karim, Marhaba Taha F

机构信息

Department of Civil and Environmental Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA.

出版信息

J Hazard Mater. 2003 Jun 27;100(1-3):117-30. doi: 10.1016/s0304-3894(03)00071-2.

Abstract

Statistical procedures enable a multivariate analysis of the measurements to identify specific characteristics of the dissolved organic matter (DOM) fractions in raw natural water, including the concentrations. In this work, three already established models were used to predict the concentrations of fractions of DOM from spectral fluorescent signatures (SFSs): a general linear regression (GLR), loadings and scores of a principal components analysis (PCA), and a partial least squares regression (PLS). Details about the method undertaken to prepare the fractions were given. Water samples from surface water treatment plants in New Jersey were used for the testing. In all cases, PLS have shown much better biases and accuracies than GLR and PCA models. Hydrophilic neutral, however, showed poor performances (bias 33%) due to the isolation technique used. Recommendations were provided in order to improve the DOM characterization through SFS, which linked to PLS make a powerful and cost-effective surrogate parameter to characterize DOM.

摘要

统计程序能够对测量数据进行多变量分析,以识别天然原水中溶解有机物(DOM)组分的特定特征,包括浓度。在这项工作中,使用了三种已建立的模型,根据光谱荧光特征(SFS)预测DOM组分的浓度:一般线性回归(GLR)、主成分分析(PCA)的载荷和得分,以及偏最小二乘回归(PLS)。文中给出了制备这些组分所采用方法的详细信息。使用了新泽西州地表水处理厂的水样进行测试。在所有情况下,PLS表现出比GLR和PCA模型更好的偏差和准确性。然而,由于所采用的分离技术,亲水中性组分表现不佳(偏差为33%)。为了通过SFS改进DOM表征,提供了相关建议,与PLS相关联使其成为表征DOM的强大且具有成本效益的替代参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验