Szibor M, Holtz J
Institute of Pathophysiology, Martin-Luther-University, Halle-Wittenberg, Germany.
Basic Res Cardiol. 2003 Jul;98(4):210-8. doi: 10.1007/s00395-003-0421-z.
Mitochondria in largely postmitotic cells (e.g. cardiomyocytes, neurons or skeletal muscle myotubes) have a limited life span of a few weeks. Their replacement during normal turnover requires an intergenomic coordination between the mitochondrial genome (mtDNA, encoding for 13 protein subunits of the respiratory chain, two mitochondrial rRNAs and the 22 mitochondrial tRNAs) and the nuclear genome (encoding for more than 99 % of the mitochondrial proteins). The mtDNA contains only a very small non-coding region, it is exposed to radicals generated by the respiratory chain during aerobic ATP formation, and mitochondrial DNA repair capacity is rather low. Therefore, oxidative damage of mtDNA, accumulating with age, should affect mitochondrially encoded proteins, but the high number of mitochondrial genomes (roughly 10 per mitochondrion) allows a certain degree of heteroplasmy (different genomes within a mitochondrion) without effects on phenotype. Therefore, age-associated increments in mtDNA damage are to a major extent an epiphenomenon. On the other hand, however, there are clonal accumulations of damaged/mutated mtDNA within individual cells up to homoplasmy of mutant mtDNA, which are either neutral with regard to phenotype or which cause substantial phenotype alterations: hyporespiratory phenotype (less radicals and less ATP!) or a phenotype with a dysproportionate respiratory chain, i.e. partial defects within the chain with enhanced radical formation proximal to this defect and with enhanced susceptibility to oxidative stress-triggered apoptosis, probably explaining the progressive loss of cardiomyocytes with advanced age. Thus, a minority of age-associated alterations in mtDNA may explain important features of the ageing heart: myocyte losses and myocyte heterogeneity. However, documentation of definite proof for this possibility is lacking and may be difficult.
在大多处于终末分化状态的细胞(如心肌细胞、神经元或骨骼肌肌管)中,线粒体的寿命有限,仅为数周。在正常更新过程中,线粒体的替换需要线粒体基因组(mtDNA,编码呼吸链的13个蛋白质亚基、两种线粒体rRNA和22种线粒体tRNA)与核基因组(编码超过99%的线粒体蛋白质)之间进行基因组间协调。mtDNA仅包含一个非常小的非编码区域,在有氧ATP形成过程中,它会暴露于呼吸链产生的自由基中,并且线粒体DNA修复能力相当低。因此,随着年龄增长而积累的mtDNA氧化损伤应该会影响线粒体编码的蛋白质,但线粒体基因组数量众多(每个线粒体约有10个),这使得一定程度的异质性(一个线粒体内存在不同的基因组)不会影响表型。因此,与年龄相关的mtDNA损伤增加在很大程度上是一种附带现象。然而,另一方面,在单个细胞内会出现受损/突变mtDNA的克隆性积累,直至突变mtDNA达到同质性,这些积累要么对表型呈中性,要么会导致显著的表型改变:呼吸功能减退表型(自由基减少,ATP减少!)或呼吸链比例失调的表型,即呼吸链内部分缺陷,在该缺陷近端自由基形成增加,对氧化应激引发的凋亡敏感性增加,这可能解释了心肌细胞随年龄增长而逐渐丧失的现象。因此,少数与年龄相关的mtDNA改变可能解释了衰老心脏的重要特征:心肌细胞丧失和心肌细胞异质性。然而,目前缺乏对此可能性的确切证据,且可能难以获得。