Suppr超能文献

基于自适应滑模技术的线性超声波电机驱动小波神经网络控制

Wavelet neural network control for linear ultrasonic motor drive via adaptive sliding-mode technique.

作者信息

Lin Faa-Jeng, Wai Rong-Jong, Chen Mu-Ping

机构信息

Department of Electrical Engineering, National Dong Hwa University, Hualien 974, Taiwan.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Jun;50(6):686-98. doi: 10.1109/tuffc.2003.1209556.

Abstract

A wavelet neural network (WNN) control system is proposed to control the moving table of a linear ultrasonic motor (LUSM) drive system to track periodic reference trajectories in this study. The design of the WNN control system is based on an adaptive sliding-mode control technique. The structure and operating principle of the LUSM are introduced, and the driving circuit of the LUSM, which is a voltage source inverter using two-inductance two capacitance (LLCC) resonant technique, is introduced. Because the dynamic characteristics and motor parameters of the LUSM are nonlinear and time varying, a WNN control system is designed based on adaptive sliding-mode control technique to achieve precision position control. In the WNN control system, a WNN is used to learn the ideal equivalent control law, and a robust controller is designed to meet the sliding condition. Moreover, the adaptive learning algorithms of the WNN and the bound estimation algorithm of the robust controller are derived from the sense of Lyapunov stability analysis. The effectiveness of the proposed WNN control system is verified by some experimental results in the presence of uncertainties.

摘要

本研究提出一种小波神经网络(WNN)控制系统,用于控制线性超声电机(LUSM)驱动系统的移动工作台,以跟踪周期性参考轨迹。WNN控制系统的设计基于自适应滑模控制技术。介绍了LUSM的结构和工作原理,并介绍了LUSM的驱动电路,该驱动电路是采用双电感双电容(LLCC)谐振技术的电压源逆变器。由于LUSM的动态特性和电机参数是非线性且时变的,因此基于自适应滑模控制技术设计了WNN控制系统,以实现精确的位置控制。在WNN控制系统中,使用WNN学习理想的等效控制律,并设计了一个鲁棒控制器以满足滑模条件。此外,WNN的自适应学习算法和鲁棒控制器的边界估计算法是从李雅普诺夫稳定性分析的角度推导出来的。在存在不确定性的情况下,通过一些实验结果验证了所提出的WNN控制系统的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验