Suppr超能文献

基于对角递归小脑模型关节控制器网络的线性压电陶瓷电机驱动自适应混合控制

Adaptive hybrid control for linear piezoelectric ceramic motor drive using diagonal recurrent CMAC network.

作者信息

Wai Rong-Jong, Lin Chih-Min, Peng Ya-Fu

机构信息

Department of Electrical Engineering, Yuan Ze University, Chung Li 32026, Taiwan, ROC.

出版信息

IEEE Trans Neural Netw. 2004 Nov;15(6):1491-506. doi: 10.1109/TNN.2004.837784.

Abstract

This paper presents an adaptive hybrid control system using a diagonal recurrent cerebellar-model-articulation-computer (DRCMAC) network to control a linear piezoelectric ceramic motor (LPCM) driven by a two-inductance two-capacitance (LLCC) resonant inverter. Since the dynamic characteristics and motor parameters of the LPCM are highly nonlinear and time varying, an adaptive hybrid control system is therefore designed based on a hypothetical dynamic model to achieve high-precision position control. The architecture of DRCMAC network is a modified model of a cerebellar-model-articulation-computer (CMAC) network to attain a small number of receptive-fields. The novel idea of this study is that it employs the concept of diagonal recurrent neural network (DRNN) in order to capture the system dynamics and convert the static CMAC into a dynamic one. This adaptive hybrid control system is composed of two parts. One is a DRCMAC network controller that is used to mimic a conventional computed torque control law due to unknown system dynamics, and the other is a compensated controller with bound estimation algorithm that is utilized to recover the residual approximation error for guaranteeing the stable characteristic. The effectiveness of the proposed driving circuit and control system is verified with hardware experiments under the occurrence of uncertainties. In addition, the advantages of the proposed control scheme are indicated in comparison with a traditional integral-proportional (IP) position control system.

摘要

本文提出了一种自适应混合控制系统,该系统使用对角递归小脑模型关节控制器(DRCMAC)网络来控制由双电感双电容(LLCC)谐振逆变器驱动的线性压电陶瓷电机(LPCM)。由于LPCM的动态特性和电机参数具有高度非线性且时变,因此基于假设动态模型设计了一种自适应混合控制系统,以实现高精度位置控制。DRCMAC网络的架构是小脑模型关节控制器(CMAC)网络的改进模型,以获得少量感受野。本研究的新颖之处在于采用对角递归神经网络(DRNN)的概念来捕捉系统动态,并将静态CMAC转换为动态CMAC。这种自适应混合控制系统由两部分组成。一部分是DRCMAC网络控制器,用于在系统动态未知时模仿传统的计算转矩控制律,另一部分是带有边界估计算法的补偿控制器,用于恢复残余近似误差以保证稳定特性。在存在不确定性的情况下,通过硬件实验验证了所提出的驱动电路和控制系统的有效性。此外,与传统的积分比例(IP)位置控制系统相比,指出了所提出控制方案的优点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验