Suppr超能文献

在虚拟运动期间,分级突触电流驱动游泳足运动神经元的冲动爆发。

During fictive locomotion, graded synaptic currents drive bursts of impulses in swimmeret motor neurons.

作者信息

Mulloney Brian

机构信息

Section of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616-8519, USA.

出版信息

J Neurosci. 2003 Jul 2;23(13):5953-62. doi: 10.1523/JNEUROSCI.23-13-05953.2003.

Abstract

During forward swimming, motor neurons that innervate each crayfish swimmeret fire periodic coordinated bursts of impulses. These bursts occur simultaneously in neurons that are functional synergists but alternate with bursts in their antagonists. These impulses ride on periodic oscillations of membrane potential that occur simultaneously in neurons of each type. A model of the local circuit that generates this motor pattern has been proposed. In this model, each motor neuron is driven alternately by excitatory and inhibitory synaptic currents from nonspiking local interneurons. I tested this model by perturbing individual interneurons and recording synaptic currents and changes in input resistance from each class of motor neuron. I also simulated the synaptic currents that would be observed in a cell subject to different patterns of presynaptic input. When the CNS was actively expressing the swimming motor pattern, changes in the membrane potential of individual local interneurons controlled firing of whole sets of motor neurons. Membrane currents in these motor neurons oscillated in phase with the motor output from their own local circuit. The phases of these oscillations differed in different functional classes of motor neurons. In neurons that could be clamped at the reversal potential of their outward currents, the model predicted that large periodic inward currents would be recorded. I observed no signs of periodic inward currents, even when the outward currents clearly had reversed. These results permit a simplification of the cellular model. They are discussed in the context of neural control of locomotion in crustacea and insects.

摘要

在向前游动过程中,支配每只小龙虾游泳足的运动神经元会发出周期性的协调脉冲群。这些脉冲群在起功能协同作用的神经元中同时出现,但与它们的拮抗神经元中的脉冲群交替出现。这些脉冲伴随着膜电位的周期性振荡,而这种振荡在每种类型的神经元中同时发生。已经提出了一个产生这种运动模式的局部回路模型。在这个模型中,每个运动神经元由来自无锋电位的局部中间神经元的兴奋性和抑制性突触电流交替驱动。我通过扰动单个中间神经元并记录每类运动神经元的突触电流和输入电阻的变化来测试这个模型。我还模拟了在一个受到不同模式突触前输入的细胞中会观察到的突触电流。当中枢神经系统积极表达游泳运动模式时,单个局部中间神经元的膜电位变化控制着整组运动神经元的放电。这些运动神经元中的膜电流与它们自己局部回路的运动输出同相振荡。这些振荡的相位在不同功能类别的运动神经元中有所不同。在那些可以钳制在其外向电流反转电位的神经元中,该模型预测会记录到大量周期性的内向电流。即使外向电流明显反转,我也没有观察到周期性内向电流的迹象。这些结果允许简化细胞模型。将在甲壳类动物和昆虫运动的神经控制背景下讨论这些结果。

相似文献

1
During fictive locomotion, graded synaptic currents drive bursts of impulses in swimmeret motor neurons.
J Neurosci. 2003 Jul 2;23(13):5953-62. doi: 10.1523/JNEUROSCI.23-13-05953.2003.
2
A separate local pattern-generating circuit controls the movements of each swimmeret in crayfish.
J Neurophysiol. 1993 Dec;70(6):2620-31. doi: 10.1152/jn.1993.70.6.2620.
3
Passive properties of swimmeret motor neurons.
J Neurophysiol. 1997 Jul;78(1):92-102. doi: 10.1152/jn.1997.78.1.92.
4
Mechanisms of coordination in distributed neural circuits: encoding coordinating information.
J Neurosci. 2014 Apr 16;34(16):5627-39. doi: 10.1523/JNEUROSCI.2670-13.2014.
5
State-changes in the swimmeret system: a neural circuit that drives locomotion.
J Exp Biol. 2009 Nov;212(Pt 22):3605-11. doi: 10.1242/jeb.033621.
6
Nonspiking local interneuron in the motor pattern generator for the crayfish swimmeret.
J Neurophysiol. 1985 Jul;54(1):28-39. doi: 10.1152/jn.1985.54.1.28.
7
Not by spikes alone: responses of coordinating neurons and the swimmeret system to local differences in excitation.
J Neurophysiol. 2007 Jan;97(1):436-50. doi: 10.1152/jn.00580.2006. Epub 2006 Oct 18.
9
Interaction and synchronization between two abdominal motor systems in crayfish.
J Neurophysiol. 1993 May;69(5):1373-83. doi: 10.1152/jn.1993.69.5.1373.
10
Descending control of nonspiking local interneurons in the terminal abdominal ganglion of the crayfish.
J Neurophysiol. 1994 Jul;72(1):235-47. doi: 10.1152/jn.1994.72.1.235.

引用本文的文献

1
Model-based comparison of current flow in rod bipolar cells of healthy and early-stage degenerated retina.
Exp Eye Res. 2021 Jun;207:108554. doi: 10.1016/j.exer.2021.108554. Epub 2021 Mar 30.
2
Profiling neurotransmitters in a crustacean neural circuit for locomotion.
PLoS One. 2018 May 22;13(5):e0197781. doi: 10.1371/journal.pone.0197781. eCollection 2018.
3
The Sensitivity of the Crayfish Reward System to Mammalian Drugs of Abuse.
Front Physiol. 2017 Dec 6;8:1007. doi: 10.3389/fphys.2017.01007. eCollection 2017.
4
Rigidity and Flexibility: The Central Basis of Inter-Leg Coordination in the Locust.
Front Neural Circuits. 2017 Jan 11;10:112. doi: 10.3389/fncir.2016.00112. eCollection 2016.
5
Task-dependent modification of leg motor neuron synaptic input underlying changes in walking direction and walking speed.
J Neurophysiol. 2015 Aug;114(2):1090-101. doi: 10.1152/jn.00006.2015. Epub 2015 Jun 10.
7
Proprioceptive feedback modulates coordinating information in a system of segmentally distributed microcircuits.
J Neurophysiol. 2014 Dec 1;112(11):2799-809. doi: 10.1152/jn.00321.2014. Epub 2014 Sep 3.
8
Mechanisms of coordination in distributed neural circuits: encoding coordinating information.
J Neurosci. 2014 Apr 16;34(16):5627-39. doi: 10.1523/JNEUROSCI.2670-13.2014.
9
Mechanisms of coordination in distributed neural circuits: decoding and integration of coordinating information.
J Neurosci. 2014 Jan 15;34(3):793-803. doi: 10.1523/JNEUROSCI.2642-13.2014.
10
Five types of nonspiking interneurons in local pattern-generating circuits of the crayfish swimmeret system.
J Neurophysiol. 2013 Jul;110(2):344-57. doi: 10.1152/jn.00079.2013. Epub 2013 Apr 24.

本文引用的文献

1
AUTOGENIC RHYTHMICITY IN THE ABDOMINAL GANGLIA OF THE CRAYFISH: THE CONTROL OF SWIMMERET MOVEMENTS.
Comp Biochem Physiol. 1964 May;12:107-15. doi: 10.1016/0010-406x(64)90053-2.
2
Architectonics of crayfish ganglia.
Microsc Res Tech. 2003 Feb 15;60(3):253-65. doi: 10.1002/jemt.10265.
3
Limb movements during locomotion: Tests of a model of an intersegmental coordinating circuit.
J Neurosci. 2001 Oct 1;21(19):7859-69. doi: 10.1523/JNEUROSCI.21-19-07859.2001.
6
Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit.
J Neurosci. 2000 Sep 15;20(18):6752-9. doi: 10.1523/JNEUROSCI.20-18-06752.2000.
7
Functional organization of crayfish abdominal ganglia. III. Swimmeret motor neurons.
J Comp Neurol. 2000 Apr 3;419(2):233-43. doi: 10.1002/(sici)1096-9861(20000403)419:2<233::aid-cne7>3.0.co;2-y.
9
Pattern generation for stick insect walking movements--multisensory control of a locomotor program.
Brain Res Brain Res Rev. 1998 Jun;27(1):65-88. doi: 10.1016/s0165-0173(98)00006-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验