Emmy Noether Group/Institute of Zoology, University of Cologne, D50674 Cologne, Germany.
J Neurosci. 2014 Apr 16;34(16):5627-39. doi: 10.1523/JNEUROSCI.2670-13.2014.
We describe synaptic connections through which information essential for encoding efference copies reaches two coordinating neurons in each of the microcircuits that controls limbs on abdominal segments of the crayfish, Pacifastacus leniusculus. In each microcircuit, these coordinating neurons fire bursts of spikes simultaneously with motor neurons. These bursts encode timing, duration, and strength of each motor burst. Using paired microelectrode recordings, we demonstrate that one class of nonspiking neurons in each microcircuit's pattern-generating kernel--IPS--directly inhibits the ASCE coordinating neuron that copies each burst in power-stroke (PS) motor neurons. This inhibitory synapse parallels IPS's inhibition of the same PS motor neurons. Using a disynaptic pathway to control its membrane potential, we demonstrate that a second type of nonspiking interneuron in the pattern-generating kernel--IRSh--inhibits the DSC coordinating neuron that copies each burst in return-stroke (RS) motor neurons. This inhibitory synapse parallels IRS's inhibition of the microcircuit's RS motor neurons. Experimental changes in the membrane potential of one IPS or one IRSh neuron simultaneously changed the strengths of motor bursts, durations, numbers of spikes, and spike frequency in the simultaneous ASCE and DSC bursts. ASCE and DSC coordinating neurons link the segmentally distributed microcircuits into a coordinated system that oscillates with the same period and with stable phase differences. The inhibitory synapses from different pattern-generating neurons that parallel their inhibition of different sets of motor neurons enable ASCE and DSC to encode details of each oscillation that are necessary for stable, adaptive synchronization of the system.
我们描述了信息传递的突触连接,这些信息对于编码传出副本至关重要,这些连接到达了控制螯虾腹部节段肢体的每个微电路中的两个协调神经元。在每个微电路中,这些协调神经元与运动神经元同时爆发尖峰。这些爆发编码了每个运动爆发的时间、持续时间和强度。使用配对微电极记录,我们证明了每个微电路模式生成核中的一类非尖峰神经元(IPS)直接抑制 ASCE 协调神经元,该神经元复制功率冲程 (PS) 运动神经元中的每个爆发。这个抑制性突触与 IPS 对相同 PS 运动神经元的抑制平行。使用双突触通路来控制其膜电位,我们证明了模式生成核中的第二类非尖峰中间神经元(IRSh)抑制 DSC 协调神经元,该神经元复制返回冲程 (RS) 运动神经元中的每个爆发。这个抑制性突触与 IRS 对微电路的 RS 运动神经元的抑制平行。一个 IPS 或一个 IRS 神经元的膜电位的实验变化同时改变了 ASCE 和 DSC 爆发中运动爆发的强度、持续时间、尖峰数量和尖峰频率。ASCE 和 DSC 协调神经元将节段分布的微电路连接成一个协调系统,该系统以相同的周期和稳定的相位差振荡。来自不同模式生成神经元的抑制性突触与其对不同运动神经元组的抑制平行,使 ASCE 和 DSC 能够编码每个振荡的细节,这些细节对于系统的稳定、自适应同步是必要的。