Suppr超能文献

分布式神经回路中的协调机制:协调信息的编码。

Mechanisms of coordination in distributed neural circuits: encoding coordinating information.

机构信息

Emmy Noether Group/Institute of Zoology, University of Cologne, D50674 Cologne, Germany.

出版信息

J Neurosci. 2014 Apr 16;34(16):5627-39. doi: 10.1523/JNEUROSCI.2670-13.2014.

Abstract

We describe synaptic connections through which information essential for encoding efference copies reaches two coordinating neurons in each of the microcircuits that controls limbs on abdominal segments of the crayfish, Pacifastacus leniusculus. In each microcircuit, these coordinating neurons fire bursts of spikes simultaneously with motor neurons. These bursts encode timing, duration, and strength of each motor burst. Using paired microelectrode recordings, we demonstrate that one class of nonspiking neurons in each microcircuit's pattern-generating kernel--IPS--directly inhibits the ASCE coordinating neuron that copies each burst in power-stroke (PS) motor neurons. This inhibitory synapse parallels IPS's inhibition of the same PS motor neurons. Using a disynaptic pathway to control its membrane potential, we demonstrate that a second type of nonspiking interneuron in the pattern-generating kernel--IRSh--inhibits the DSC coordinating neuron that copies each burst in return-stroke (RS) motor neurons. This inhibitory synapse parallels IRS's inhibition of the microcircuit's RS motor neurons. Experimental changes in the membrane potential of one IPS or one IRSh neuron simultaneously changed the strengths of motor bursts, durations, numbers of spikes, and spike frequency in the simultaneous ASCE and DSC bursts. ASCE and DSC coordinating neurons link the segmentally distributed microcircuits into a coordinated system that oscillates with the same period and with stable phase differences. The inhibitory synapses from different pattern-generating neurons that parallel their inhibition of different sets of motor neurons enable ASCE and DSC to encode details of each oscillation that are necessary for stable, adaptive synchronization of the system.

摘要

我们描述了信息传递的突触连接,这些信息对于编码传出副本至关重要,这些连接到达了控制螯虾腹部节段肢体的每个微电路中的两个协调神经元。在每个微电路中,这些协调神经元与运动神经元同时爆发尖峰。这些爆发编码了每个运动爆发的时间、持续时间和强度。使用配对微电极记录,我们证明了每个微电路模式生成核中的一类非尖峰神经元(IPS)直接抑制 ASCE 协调神经元,该神经元复制功率冲程 (PS) 运动神经元中的每个爆发。这个抑制性突触与 IPS 对相同 PS 运动神经元的抑制平行。使用双突触通路来控制其膜电位,我们证明了模式生成核中的第二类非尖峰中间神经元(IRSh)抑制 DSC 协调神经元,该神经元复制返回冲程 (RS) 运动神经元中的每个爆发。这个抑制性突触与 IRS 对微电路的 RS 运动神经元的抑制平行。一个 IPS 或一个 IRS 神经元的膜电位的实验变化同时改变了 ASCE 和 DSC 爆发中运动爆发的强度、持续时间、尖峰数量和尖峰频率。ASCE 和 DSC 协调神经元将节段分布的微电路连接成一个协调系统,该系统以相同的周期和稳定的相位差振荡。来自不同模式生成神经元的抑制性突触与其对不同运动神经元组的抑制平行,使 ASCE 和 DSC 能够编码每个振荡的细节,这些细节对于系统的稳定、自适应同步是必要的。

相似文献

引用本文的文献

1
Existence of a Long-Range Caudo-Rostral Sensory Influence in Terrestrial Locomotion.陆生运动中存在长距离头尾向感觉影响。
J Neurosci. 2022 Jun 15;42(24):4841-4851. doi: 10.1523/JNEUROSCI.2290-20.2022. Epub 2022 May 11.
3
Communication dynamics in complex brain networks.复杂脑网络中的通信动态。
Nat Rev Neurosci. 2017 Dec 14;19(1):17-33. doi: 10.1038/nrn.2017.149.
6
Neural mechanism of optimal limb coordination in crustacean swimming.甲壳类动物游泳中最佳肢体协调的神经机制。
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13840-5. doi: 10.1073/pnas.1323208111. Epub 2014 Sep 8.

本文引用的文献

1
Neural mechanism of optimal limb coordination in crustacean swimming.甲壳类动物游泳中最佳肢体协调的神经机制。
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13840-5. doi: 10.1073/pnas.1323208111. Epub 2014 Sep 8.
3
5
6
Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion.光遗传剖析揭示了运动产生的多个节律生成模块。
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11589-94. doi: 10.1073/pnas.1304365110. Epub 2013 Jun 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验