Suppr超能文献

五种非刺神经元在螯虾游泳足系统局部模式生成回路中的作用。

Five types of nonspiking interneurons in local pattern-generating circuits of the crayfish swimmeret system.

机构信息

Institute of Zoology, University of Cologne, Cologne, Germany.

出版信息

J Neurophysiol. 2013 Jul;110(2):344-57. doi: 10.1152/jn.00079.2013. Epub 2013 Apr 24.

Abstract

We conducted a quantitative analysis of the different nonspiking interneurons in the local pattern-generating circuits of the crayfish swimmeret system. Within each local circuit, these interneurons control the firing of the power-stroke and return-stroke motor neurons that drive swimmeret movements. Fifty-four of these interneurons were identified during physiological experiments with sharp microelectrodes and filled with dextran Texas red, Neurobiotin, or both. Five types of neurons were identified on the basis of combinations of physiological and anatomical characteristics. Anatomical categories were based on 16 anatomical parameters measured from stacks of confocal images obtained from each neuron. The results support the recognition of two functional classes: inhibitors of power stroke (IPS) and inhibitors of return stroke (IRS). The IPS class of interneuron has three morphological types with similar physiological properties. The IRS class has two morphological types with physiological properties and anatomical features different from the IPS neurons but similar within the class. Three of these five types have not been previously identified. Reviewing the evidence for dye coupling within each type, we conclude that each type of IPS neuron and one type of IRS neuron occur as a single copy in each local pattern-generating circuit. The last IRS type includes neurons that might occur as a dye-coupled pair in each local circuit. Recognition of these different interneurons in the swimmeret pattern-generating circuits leads to a refined model of the local pattern-generating circuit that includes synaptic connections that encode and decode information required for intersegmental coordination of swimmeret movements.

摘要

我们对龙虾游肢系统局部模式生成电路中的不同非锋电位中间神经元进行了定量分析。在每个局部回路中,这些中间神经元控制着驱动游肢运动的动力冲程和返回冲程运动神经元的放电。在使用锋利的微电极进行的生理实验中,我们鉴定了 54 个这样的中间神经元,并将葡聚糖 Texas Red、Neurobiotin 或两者都填充到这些神经元中。根据生理和解剖特征的组合,我们鉴定了 5 种神经元类型。解剖学分类基于从每个神经元获得的共聚焦图像堆栈中测量的 16 个解剖参数。结果支持两种功能类别:动力冲程抑制剂(IPS)和返回冲程抑制剂(IRS)的识别。IPS 类中间神经元具有三种形态类型,具有相似的生理特性。IRS 类具有两种形态类型,其生理特性和解剖特征与 IPS 神经元不同,但在类内相似。这五种类型中有三种以前没有被识别出来。回顾每种类型内的染料偶联证据,我们得出结论,每个 IPS 神经元类型和一个 IRS 神经元类型在每个局部模式生成电路中仅出现一次。最后一种 IRS 类型包括在每个局部电路中可能作为染料偶联对出现的神经元。在游肢模式生成电路中识别出这些不同的中间神经元,导致对局部模式生成电路的改进模型,其中包括编码和解码游肢运动的节间协调所需信息的突触连接。

相似文献

1
Five types of nonspiking interneurons in local pattern-generating circuits of the crayfish swimmeret system.
J Neurophysiol. 2013 Jul;110(2):344-57. doi: 10.1152/jn.00079.2013. Epub 2013 Apr 24.
2
Nonspiking local interneuron in the motor pattern generator for the crayfish swimmeret.
J Neurophysiol. 1985 Jul;54(1):28-39. doi: 10.1152/jn.1985.54.1.28.
3
4
Mechanisms of coordination in distributed neural circuits: encoding coordinating information.
J Neurosci. 2014 Apr 16;34(16):5627-39. doi: 10.1523/JNEUROSCI.2670-13.2014.
5
A separate local pattern-generating circuit controls the movements of each swimmeret in crayfish.
J Neurophysiol. 1993 Dec;70(6):2620-31. doi: 10.1152/jn.1993.70.6.2620.
8
Not by spikes alone: responses of coordinating neurons and the swimmeret system to local differences in excitation.
J Neurophysiol. 2007 Jan;97(1):436-50. doi: 10.1152/jn.00580.2006. Epub 2006 Oct 18.
9
Descending control of nonspiking local interneurons in the terminal abdominal ganglion of the crayfish.
J Neurophysiol. 1994 Jul;72(1):235-47. doi: 10.1152/jn.1994.72.1.235.
10
Interaction and synchronization between two abdominal motor systems in crayfish.
J Neurophysiol. 1993 May;69(5):1373-83. doi: 10.1152/jn.1993.69.5.1373.

引用本文的文献

1
Neuronal morphologies built for reliable physiology in a rhythmic motor circuit.
Elife. 2019 Jan 18;8:e41728. doi: 10.7554/eLife.41728.
3
And yet it moves: Recovery of volitional control after spinal cord injury.
Prog Neurobiol. 2018 Jan;160:64-81. doi: 10.1016/j.pneurobio.2017.10.004. Epub 2017 Nov 2.
6
Neural mechanism of optimal limb coordination in crustacean swimming.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13840-5. doi: 10.1073/pnas.1323208111. Epub 2014 Sep 8.
7
Proprioceptive feedback modulates coordinating information in a system of segmentally distributed microcircuits.
J Neurophysiol. 2014 Dec 1;112(11):2799-809. doi: 10.1152/jn.00321.2014. Epub 2014 Sep 3.
8
Mechanisms of coordination in distributed neural circuits: encoding coordinating information.
J Neurosci. 2014 Apr 16;34(16):5627-39. doi: 10.1523/JNEUROSCI.2670-13.2014.
9
Mechanisms of coordination in distributed neural circuits: decoding and integration of coordinating information.
J Neurosci. 2014 Jan 15;34(3):793-803. doi: 10.1523/JNEUROSCI.2642-13.2014.

本文引用的文献

1
Neurobiology of the crustacean swimmeret system.
Prog Neurobiol. 2012 Feb;96(2):242-67. doi: 10.1016/j.pneurobio.2012.01.002. Epub 2012 Jan 14.
3
Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg.
J Neurophysiol. 2009 Sep;102(3):1956-75. doi: 10.1152/jn.00312.2009. Epub 2009 Jul 15.
4
Molecular mechanism of rectification at identified electrical synapses in the Drosophila giant fiber system.
Curr Biol. 2008 Dec 23;18(24):1955-60. doi: 10.1016/j.cub.2008.10.067. Epub 2008 Dec 11.
5
Bursts of information: coordinating interneurons encode multiple parameters of a periodic motor pattern.
J Neurophysiol. 2006 Feb;95(2):850-61. doi: 10.1152/jn.00939.2005. Epub 2005 Oct 19.
6
A dye mixture (Neurobiotin and Alexa 488) reveals extensive dye-coupling among neurons in leeches; physiology confirms the connections.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Dec;191(12):1157-71. doi: 10.1007/s00359-005-0047-8. Epub 2005 Aug 27.
8
Molecular basis of gap junctional communication in the CNS of the leech Hirudo medicinalis.
J Neurosci. 2004 Jan 28;24(4):886-94. doi: 10.1523/JNEUROSCI.3676-03.2004.
9
10
Differential dye coupling reveals lateral giant escape circuit in crayfish.
J Comp Neurol. 2003 Nov 3;466(1):1-13. doi: 10.1002/cne.10802.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验